
Best Practices Guide
revision 4



Information in this document is subject to change without notice. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
permission of Autonomy.

Copyright © 2003 Autonomy.

Portal-in-a-Box, Classification Server, UAServer, HTTPFetch, AutoIndexer, Moreover Fetch, DIH, DAH, DiSH and
DRE are trademarks of Autonomy.



Table of Contents

1. Introduction ................................................................................................................................ 1

2. Planning, installing and configuring Portal-in-a-Box 4........................................................... 3
Typical Portal-in-a-Box set up ...................................................................................................... 4
Portal-in-a-Box setup in a distributed environment....................................................................... 6
Planning ....................................................................................................................................... 8
Installation .................................................................................................................................. 14
Configuration.............................................................................................................................. 15

3. Modifying configuration files .................................................................................................. 25
Modifying configuration parameter values.................................................................................. 25

4. Extracting document titles ...................................................................................................... 27
Generating titles from a document's content .............................................................................. 27
Manipulating title fields before extracting a title.......................................................................... 28
Specifying a field to extract a title from....................................................................................... 29

5. Generating document summaries .......................................................................................... 31
Generating summaries during importing / indexing .................................................................... 32
Generating summaries during querying ..................................................................................... 35

6. Improving document content.................................................................................................. 39
Content breaking........................................................................................................................ 39
Good content.............................................................................................................................. 42

7. Configuring data storage......................................................................................................... 45
Checking your data is indexed into the DRE.............................................................................. 45
Removing duplicates during indexing......................................................................................... 47
Setting expiry time...................................................................................................................... 51

8. Setting up security................................................................................................................... 53
Performance............................................................................................................................... 53
Integrating Autonomy products .................................................................................................. 54



9. Querying a DRE ........................................................................................................................55
Query types ................................................................................................................................55
Restricting queries with field specifiers .......................................................................................56
Using field restrictions to display results .....................................................................................58

10. Improving DRE performance................................................................................................59
Scheduling indexing and query processes..................................................................................59
Calculating the number of CPUs needed per DRE .....................................................................60
Calculating the number of threads that the DRE can use ...........................................................60
File descriptor limitations on Solaris ...........................................................................................62
Calculating cache sizes ..............................................................................................................62
DRE content ...............................................................................................................................64
Optimizing querying ....................................................................................................................65
Optimizing indexing ....................................................................................................................66

11. Clustering with Classification Server ..................................................................................67
The clustering process................................................................................................................67
Optimizing clustering...................................................................................................................68
Configuration recommendations .................................................................................................70

12. Legacy compatibility .............................................................................................................75
Importing categories from legacy topic sets................................................................................75
Indexing manually tagged documents into the DRE ...................................................................75
Legacy search ............................................................................................................................76

Glossary ............................................................................................................................................77

Index ..................................................................................................................................................79



Autonomy 

Autonomy employs a fundamentally different and unique combination of technologies to enable
computers to form an understanding of a page of text, web pages, e-mails, voice, documents and
people. 

Autonomy's solution is therefore able to power any application dependent upon unstructured
information within every market sector, including: e-commerce, customer relationship management,
knowledge management, enterprise information portals and online publishing applications. 

This is evidenced by the significant penetration of the technology in a diversity of vertical markets and
has been achieved principally because every market sector needs to manage and leverage the
benefits of unstructured information.

Autonomy was founded in 1996 and has offices in Boston, Chicago, Dallas, San Francisco, New
York, and Washington, D.C. in the United States, as well as offices throughout EMEA, including
Amsterdam, Brussels, Cambridge, Frankfurt, Milan, Paris, Oslo, and Sydney. In July 1998, the
company went public on the EASDAQ exchange (EASDAQ:AUTN). Autonomy floated on The
NASDAQ National Market (NASDAQ: AUTN) in May 2000, and on the London Stock Exchange (LSE:
AU.) in November 2000.





To contact Autonomy, please get in touch with your nearest location listed below.

Europe and South Pacific

Autonomy Systems Ltd.

Cambridge Business Park

Cowley Road

Cambridge

CB4 0WZ

Help Desk: +44 (0) 800 0 282 858

Switchboard: +44 (0) 1223 448 000

Fax: +44 (0) 1223 448 001

E-mail for information: autonomy@autonomy.com

for support: uksupport@autonomy.com

The Help Desk operates from 9.30 am to 6.00 pm (GMT) Monday to Friday.

Website: www.autonomy.com

USA

Autonomy Inc.

301 Howard Street

22nd Floor

San Francisco

CA 94105

Help Desk: +1 877 333 7744

Switchboard: +1 415 243 9955

Fax: +1 415 243 9984

E-mail for information: info@us.autonomy.com 

for support: support@us.autonomy.com 

The Help Desk operates from 9.30 am to 6.00 pm (CST) Monday to Friday, toll-free.

Website: www.autonomy.com

mailto:autonomy@autonomy.com
mailto:uksupport@autonomy.com
http://www.autonomy.com/
mailto:info@us.autonomy.com
mailto:support@us.autonomy.com
http://www.autonomy.com/


Welcome
Thank you for choosing Autonomy and welcome to your Best Practices Guide. 

Autonomy Solutions

Autonomy solutions provide the software infrastructure that automates operations on unstructured
information. This software infrastructure is based on IDOL server, the Intelligent Data Operating
Layer. IDOL makes it possible for organizations to process digital content automatically and to enable
applications to operate with each other. It consists of data operations that integrate information by
understanding any type of content, and is therefore data agnostic. The IDOL server software
infrastructure is fully scalable and customizable according to customers’ present and future needs. 

Autonomy solutions include:

• Autonomy Connectors ™ enable automatic content aggregation from any type of local or
remote repository (for example, a database, a web site, a real-time telephone conversation etc.),
facilitating a unified solution across all information assets within the organization.

• ACI Servers ™ automatically perform a variety of operations on structured, unstructured and
semi-structured information (documents, audio, video etc.). These operations include automatic
hyperlinking, tag reconciliation, XML tagging, profiling, alerting, categorization, cluster mapping,
real-time transcription, targeting etc.

• Autonomy Application Builder ™ is a toolkit that enables companies and partners to
customize Autonomy’s products according to their individual requirements. It facilitates easy
communication between custom-built applications that retrieve data using HTTP commands and
the Autonomy ACI servers, as well as simple manipulation of the returned result sets.
Communication with the servers is implemented over HTTP using XML and can adhere to
SOAP. The API is distributed with a set of sample code. 

• Portal-in-a-Box™, our comprehensive and fully automated Information Portal for content-rich
Internet and Intranet sites. 

• Portlets are windows that can be set up in Autonomy's Portal-in-a-Box or third party Portals.
Each portlet contains an application that allows the Portals' end users to benefit from a variety of
IDOL server functionality.

• Autonomy Desktop Suite™ brings the power of Autonomy to every desktop. Conducting a real-
time analysis of the ideas involved in the content of any opened desktop application, Desktop
Suite’s ActiveKnowledge or Active Windows Extensions module provides real-time links to
relevant internal and external information without the user being needlessly diverted from their
work in progress to perform an exasperating search or retrieval operation.

• Autonomy Product Orientated Drop-in Solutions ™ allow Autonomy solutions to be easily
integrated with third party applications and solution providers. PODS enable organizations to
make their existing applications compatible with IDOL with minimal configuration and
administration requirements. Making IDOL server a part of any solution delivers the direct
benefits of content automation and the ability to perform a vast range of IDOL server operations,
irrelevant of file format or location.



Introduction

Page 1

1. Introduction

Autonomy provides the software infrastructure that automates operations on unstructured information.
This software infrastructure is based on IDOL, the Intelligent Data Operating Layer. IDOL makes it
possible for organizations to process digital content automatically and allow applications to
communicate with each other. It consists of data operations that integrate information by
understanding content, and is therefore data agnostic.

Information that you need in order to conduct business successfully comprises data in various
repositories, for example, file systems (including multimedia files), the internet, e-mail systems
or legacy systems. 



Introduction

Page 2

Connectors

Autonomy Connectors (for example HTTPFetch, Oracle Fetch, AutoIndexer and so on)
aggregate the information from its various repositories, import it to IDX or XML file format and
index it into one of the ACI Servers. If you have multiple instances of an ACI Server installed,
you can use the DIH (Distributed Index Handler) to distribute and load-balance indexing.

ACI Servers

The Autonomy ACI Servers (DRE 4 / AXE, UAServer, Classification Server) allow you to
perform a variety of operations on different types of information. 

The ACI (Autonomy Content Infrastructure) Client API is a technology layer that enables easy
communication between custom-built applications that retrieve data using HTTP commands
and the Autonomy ACI servers, as well as simple manipulation of the returned result sets.
Communication with the servers is implemented over HTTP using XML and can adhere to
SOAP.

By automating operations on unstructured information for cross enterprise applications, the
ACI API creates an automated and compatible business-to-business, peer-to-peer
infrastructure. This allows enterprise applications to understand and process content that
exists in unstructured formats, such as e-mail, Web pages, office documents, and Lotus
Notes.

APPOLS and OEM applications

The information that has been indexed into and processed by the ACI servers can be
accessed via various clients and Interfaces using APPOLS (Application Operating Layers, for
example Portal-in-a-Box, Commerce Application Builder, Autonomy Answer, Voice Suite and
so on) or OEM Applications (Portals such as IBM's WebSphere Portal, BEA's WebLogic
Server and so on). 

If APPOLS or OEM applications use multiple ACI Servers, DQH (Distributed Query Handler)
and DiSH (Distributed Service Handler) make it possible to distribute and load-balance
querying and service administration

IAS

The IAS (Intellectual Asset Protection System) provides integrated security to protect your
data. At the front end, authentication checks that users are allowed to access the system on
which result data is displayed. At the back end, entitlement checking and authentication
combine to ensure that query results only comprise documents that the user is allowed to see,
from repositories that the user is allowed to access.

The following chapters provide you with hints for performing important stages of setting up or
integrating your Autonomy software infrastructure. The information here is intended as an addition to
the instructions in the documentation for each Autonomy component, to which you should refer for
details of how to install and set up the product.



Planning, installing and configuring Portal-in-a-Box 4

Page 3

2. Planning, installing and configuring Portal-in-a-Box 4

Portal-in-a-Box is one of the most comprehensive Autonomy solutions and serves as a good example
of how Autonomy products integrate with each other and with third party software. It comprises a
number of core Autonomy modules and its functionality can be extended by integrating it with
additional Autonomy modules. This versatility of the Portal, which enables it to be configured into a
customized solution that fits perfectly into different environments, means that developers and system
administrators who want to install the Portal need to consider the following questions:

• how should I distribute the Portal-in-a-Box components?

• do I need all the Portal-in-a-Box components?

• do I need additional components?

• what is the best way to integrate Portal-in-a-Box with pre-requisite third party
components?

• in which order should I install components if I want to integrate Portal-in-a-Box with other
Autonomy products?

• how much space do I need?

• how do I configure the components?



Planning, installing and configuring Portal-in-a-Box 4

Page 4

Typical Portal-in-a-Box set up



Planning, installing and configuring Portal-in-a-Box 4

Page 5

Users and administrators can access Portal-in-a-Box via their Intranet or via the Internet. The
administrator can log on to Portal-in-a-Box in order to access the Portal's user and administration
features.

The Portal-in-a-Box interface that users and administrators access is displayed in a web browser. If a
user or the administrator makes a request to the web server, it passes it to the JSP servlet engine
which processes the request and then passes the HTML that it has generated back to the web server.

The Autonomy ACI API is the interface between the Portal and the ACI servers from which it retrieves
information. It is written in Java. 

The Autonomy Connectors AutoIndexer, HTTPFetch and Moreover Fetch aggregate data from local
sources, the Internet and the Moreover Server. They import the data to IDX format and then index it
into the Portal-in-a-Box Content DRE’s databases.

UAServer stores user details, roles, agents and profile agents. It indexes user agents and profile
agents into an Agent DRE in order to make them available for Community queries. It also stores
security data (user permissions and authentication details) that it aggregates from any group servers
that it is connected to. This ensures that existing security policy is maintained.

The UAServer's Mailer functionality requests a list of all users and their agents from the UAServer
(which stores the agents of Autonomy front end users), and then periodically requests the UAServer
to query the DRE with the User's agents.

UAServer sends the agent results that it receives from the DRE to Mailer, which then mails the results
to the Portal users via a Mail server. By default Mailer only sends new agent results to users, not
results that have been sent before.

Classification Server identifies concepts in the data in a DRE, and uses them to build clusters of
related information. Taxonomy generation builds a hierarchical structure, either from these clusters or
from the results of a query to the DRE, which you can write to disk as a directory structure or import
into the category hierarchy. The category hierarchy contains categories that Classification Server
builds from concepts identified in your training material or imported by taxonomy generation. 



Planning, installing and configuring Portal-in-a-Box 4

Page 6

Portal-in-a-Box setup in a distributed environment



Planning, installing and configuring Portal-in-a-Box 4

Page 7

Users and administrators can access Portal-in-a-Box via their Intranet or via the Internet. The
administrator can log on to Portal-in-a-Box in order to access the Portal's user and administration
features.

The Portal-in-a-Box interface that users and administrators access is displayed in a web browser. If a
user or the administrator makes a request to the web server, it passes it to the JSP servlet engine
which processes the request and then passes the HTML that it has generated back to the web server.

The Autonomy ACI API is the interface between the Portal and the ACI servers from which it retrieves
information. It is written in Java. 

The DAH distributes ACI action commands to DRE 4 / AXE ACI servers, increasing the speed with
which actions are executed and saving processing time. Multiple copies of DREs to which the DAH
distributes actions ensure uninterrupted service if any of the DREs should fail.

The DiSH allows you to manage the Autonomy applications that the Portal-in-a-Box set up comprises
from one central point.

The DIH allows you to distribute index commands to DRE 4 / AXE ACI servers, so that index
commands are executed more quickly and processing time is saved. Multiple copies of DREs to
which the Distributed Index Handler distributes index commands ensure uninterrupted service if any
of the DREs should fail.

The Autonomy Connectors AutoIndexer, HTTPFetch and Moreover Fetch aggregate data from local
sources, the Internet and the Moreover Server. They import the data to IDX format and then index it
into the Portal-in-a-Box Content DRE’s databases.

UAServer stores user details, roles, agents and profile agents. It indexes user agents and profile
agents into an Agent DRE in order to make them available for Community queries. It also stores
security data (user permissions and authentication details) that it aggregates from any group servers
that it is connected to. This ensures that existing security policy is maintained.

The UAServer's Mailer functionality requests a list of all users and their agents from the UAServer
(which stores the agents of Autonomy front end users), and then periodically requests the UAServer
to query the DRE with the User's agents.

UAServer sends the agent results that it receives from the DRE to Mailer, which then mails the results
to the Portal users via a Mail server. By default Mailer only sends new agent results to users, not
results that have been sent before.

Classification Server identifies concepts in the data in a DRE, and uses them to build clusters of
related information. Taxonomy generation builds a hierarchical structure, either from these clusters or
from the results of a query to the DRE, which you can write to disk as a directory structure or import
into the category hierarchy. The category hierarchy contains categories that Classification Server
builds from concepts identified in your training material or imported by taxonomy generation. 



Planning, installing and configuring Portal-in-a-Box 4

Page 8

Planning

Step 1: determining project needs

Before you select the Portal-in-a-Box components, you need to determine what the needs of
your project are, for example:

• how much data do you want to process?

• what do you want to do with your data?

• what repositories store the data that you want to process? 

• how many people are going to use the Portal?

Step 2: selecting Portal components

Decide which of the Portal-in-a-Box components you want to install. The following are
available:

Content DRE (fully licensed)

An Autonomy DRE 4 into which data is indexed by HTTPFetch, Moreover Fetch and
AutoIndexer. The Portal-in-a-Box front end communicates with the Content DRE through
HTTP commands.

Unless you want to integrate the Portal with a DRE that you have already set up, you
always need to install the DRE. If you already have a DRE that you want to integrate the
Portal with, you can install the Portal DRE in addition, for example if you want a backup
DRE or spread your data across multiple DREs. 

Please refer to Step 3 for details on how to determine if you require multiple DRE
installations

UserAgent Server (fully licensed, includes the Mailer)

The UAServer allows Portal-in-a-Box to handle requests for user and agent details. It
stores a database of users and their agents and profiles centrally so that many
applications can access the user/agent information, provided they are connected via
HTTP to the computer running UAServer.

If the repositories from which data is indexed into the Content DRE are connected to
group servers, you can configure UAServer to read the security information that the group
servers store, and use it to determine which data users can access via the Portal.

The UAServer's Mailer functionality allows you to set up a process that automatically mails
users their agent results.

Unless you want to integrate the Portal with a UAServer that you have already set up, you
always need to install the UAServer.



Planning, installing and configuring Portal-in-a-Box 4

Page 9

Classification Server (partly licensed)

The Classification Server provides the following functionality:

Categories
Classification Server identifies concepts in training material such as documents, topics
from a legacy keyword engine or Autonomy Agents, and uses these concepts to build
categories. This allows you to query Classification Server in order to find documents or
categories that match your category or to find categories that match a document you
specify. 

Clusters (requires an additional license)
Starting from a snapshot you can automatically categorize data within that snapshot so
that related information is clustered together (this does not require the setup of an
initial taxonomy). Each cluster represents a concept area that contains a set of items
that share common properties. Clustering data allows you to make trends and
developments in data visible.

Taxonomy (requires an additional license)
The Classification Server's taxonomy generation feature allows you to create
automatically hierarchical contextual taxonomies of clusters or other information. This
provides you with an overview of the 'information' landscape and an insight into
specific areas of the information.

You need to acquire an additional license for Taxonomy if you want to be able to
automatically create categories from taxonomies. You can then display and modify these
categories within the following portlets:

Channels
The Channels portlet allows you to display categorized information that is relevant
to activities and interests within your organization.

Legacy Content Manager 
The Legacy Content Manager portlet allows you to import legacy topic sets to
categories, and to administer the categories that users can access in the Channels
portlet. 

You need to acquire an additional license for Clustering if you want to be able to use the
following portlets: 

BreakingNews
The BreakingNews portlet allows you to display the latest information for particular
subjects.

HotNews
The HotNews portlet allows you to display the most relevant information that is
available for particular subjects.



Planning, installing and configuring Portal-in-a-Box 4

Page 10

Spectrograph
The Spectrograph portlet displays a spectrographic view of data that stems from a
particular period in time. 

2D Map
The 2D Map portlet allows you to view the strength and spread of subjects in a
cluster of related topics.

HTTPFetch (fully licensed)

HTTPFetch is an Autonomy Connector which allows you to download documents from
web sites and index them into the Content DRE.

You should install the HTTPFetch if you want to aggregate documents from http sites (this
includes Domino.Doc and QuickPlace). Note that if you want to aggregate documents
from a local  file repository that you can access via http, you should use AutoIndexer
rather than the HTTPFetch (AutoIndexer can download the documents faster while http
connections usually have a restricted bandwidth).

AutoIndexer (fully licensed)

AutoIndexer is an Autonomy Connector which automatically checks specified directories
for new documents and indexes them into the Content DRE.

You should install AutoIndexer if you want to aggregate documents from any files that are
stored on disk.

Moreover Fetch (fully licensed)

Moreover Fetch is an Autonomy Connector which allows you to download documents
from the moreover.com web site and index them into the Content DRE.

You should install Moreover Fetch if you want to aggregate news documents (world news,
business news and so on).

JSP front end interface & Autonomy ACI API (fully licensed)

The Portal-in-a-Box user and administrative user interface. The user interface allows
users to use the Autonomy portlets to access the data that is stored in the Content DRE
(depending on their permissions). The administrative user interface allows administrators
to manage the user interface. 



Planning, installing and configuring Portal-in-a-Box 4

Page 11

Step 3: selecting additional components

Determine if you need additional products. 

DREs

The number of DRE installations you require generally depends on the number of
documents that you want the DRE to handle. Generally one DRE can comfortably store up
to 10 million documents. To achieve optimal query speed (or if you want to use the DRE for
search engine type queries), you should store no more than 2 million documents in a DRE.

It is also useful to install multiple DREs for the following reasons: 

• To improve query speed. For example, if your data exceeds 2 million documents,
and can be separated into broad categories, the DRE response time is minimized if
you spread the data across multiple DREs, so that each DRE stores one subject
area. 

Similarly, if you have data that can be separated into data that is used frequently
and data that is used infrequently, you should store each data group on individual
DREs to speed up the DRE's response time.

• To set up fail-over and load balancing in connection with a DAH or DIH installation.
Please refer to the appropriate manual for further details.

• To create a backup of the DRE. This provides you with a safe copy of the DRE and
the data it stores.

Note: if you want to index less than 2 million documents into a DRE, and these documents
can be separated into different topics, you should create a DRE database for each of the
topics in order to maximize the DRE's response time.

Connectors

The Connectors you require generally depend on the data that you want to aggregate. If you
want to retrieve documents from an Oracle or ODBC database, for example, you need
Oracle or ODBC Fetch.

Another important consideration when deciding which Connectors to use is how quickly
content that you want to index into the DRE needs to be aggregated.  For example:

• A news feed that can be accessed via http or disk would be aggregated more
quickly by AutoIndexer than HTTPFetch. Similarly, if you want to aggregate an
intranet site, AutoIndexer is a better solution than HTTPFetch.

• Domino.Doc and QuickPlace documents can be aggregated using the HTTPFetch
but will be handled more efficiently by Notes Fetch.

• Complex Oracle databases, which would require much time configuring, could be
better indexed via XML output.



Planning, installing and configuring Portal-in-a-Box 4

Page 12

DIH

If you want to index documents into multiple DREs using fail-over and load balancing, you
need to install a DIH. This enables you to scale your system in a linear manner, distributing
the execution of your index commands and saving overall processing time. 

The DIH also enables you to administer multiple DREs simultaneously.

DAH 

If you want to distribute ACI action commands between multiple DREs using fail-over and
load balancing, you need to install a DAH. This enables you to scale your system in a linear
manner, increasing the speed with which actions are executed and saving processing time.

DiSH

DiSH is a useful product to install, if you want to automatically send service commands to
the multiple Autonomy applications that your Portal installation comprises in order to control
their operation and monitor their performance. It also allows you to view and modify the
configuration of these applications and to generate statistics for them.

Step 4: distributing components

Determine where you want to install the individual components. Ideally you should distribute
them across multiple servers as follows:

Machine 1: • Portal-in-a-Box front end
(Portal-in-a-Box application, Application server, Web server)

Machine 2: • DRE 4 / AXE

Machine 3: • UAServer

Machine 4: • Classification Server

Machine 5: • DAH
• DiSH
• DIH

• AutoIndexer
• HTTPFetch
• MoreoverFetch

Note: while you may not be able to spread out the individual components like this, you
should avoid installing the DRE on a machine that hosts Connectors (as importing can be
very system resource intensive) or another DRE (to avoid two DREs competing for disk
access).  



Planning, installing and configuring Portal-in-a-Box 4

Page 13

Step 5: checking pre-requisite software

Check if you have prerequisite software installed:

A J2EE 1.2 compliant servlet engine that runs in conjunction with a web server

If you have problems integrating your web server with Portal-in-a-Box, it is recommended
that you install Resin which can easily be integrated with the Portal (please refer to the
Installation section for details).

Note: 

• If you want to use a separate web server and servlet engine, your web server must
be configured to use the servlet engine to serve web applications.

• Before you start installing Portal-in-a-Box, you must determine your web server's
web publishing directory and the servlet engine's default web application directory

• If NT automatic login is required the servlet engine needs to be installed in
conjunction with IIS.

Step 6: determining security requirements

Decide if you need to set up security, and, if so, what level of security you require:

• Front end security

Authentication to check that users are allowed to access the system on which result
data is displayed.

Note that if you require NT automatic login, your servlet engine needs to be installed
in conjunction with Microsoft IIS.

• Back end security

Entitlement checking and authentication combine to ensure that query results only
comprise documents that a user is allowed to see.

Please refer to the IAS manual for details on setting up security.



Planning, installing and configuring Portal-in-a-Box 4

Page 14

Installation

The following provides you with an overview of the steps that the installation of Portal-in-a-Box with
additional modules requires. If you do not want to install additional modules, you should ignore the
steps that apply to them and only concentrate on the Portal-in-a-Box specific steps.

Note: due to the variety of complex set ups that different servlet engines require, the integration of
Portal-in-a-Box with servlet engines and web servers can be work intensive. It is therefore
recommended that you integrate the Portal with a Resin servlet engine which contains a web server
and can easily be installed with the Portal. The following installation overview includes the steps a
Resin installation would require.

1. Download Resin 2.1.x as a zip from http://www.caucho.com/ and unzip Resin file to a directory
(for example, <resin_home>).

2. If required, install Resin as a service. 

For example install Resin as a Windows Service, run the following from a command line: 

<resin-home>\bin\httpd -install

This will create a Windows Service with the default name of the Resin web server.

3. Run the Portal-in-a-Box installer. Only install the components you require.

When the Web Publishing Directory dialog is displayed, select <resin_home>/webapps as the
web publishing directory and 8080 as Your web server port (make sure that no other process is
using this port). When the Setup Servlet Engine dialog is displayed, configure Resin as your
servlet engine.

Please refer to the installation instructions in the Portal-in-a-Box manual for details on the
installation. 

4. Start Resin (either through the Services Management Console if you have installed it as a
service or by running <resin-home>\bin\httpd from the command line. Running <resin-
home>\bin\httpd -verbose is a good way of getting diagnostic information from Resin).

5. Start the Portal services and check that the Portal loads successfully by clicking on the Portal
front end or Portal Administration link . Ensure that the services and the servlet engine are
working, and the site is visible to the appropriate parts of the network.

6. Install any additional DREs or Connectors that you require.

7. If you want to integrate Portal-in-a-Box with them, install DIH, DAH or DiSH. Please refer to the
installation instructions in the appropriate module's manual. 

Note that the DIH installation requires you to specify the IP address of one of the DREs into
which it will index data, and the DAH installation requires you to specify the IP address of two of
the DREs to which it will distribute actions. You can use the configuration file of the DIH and DAH
to connect to additional DREs (please refer to the appropriate manual). 

http://www.caucho.com/


Planning, installing and configuring Portal-in-a-Box 4

Page 15

Configuration

Step 1: DiSH configuration

If you require the DiSH, DIH and DAH you should consider the following points when you
configure them:

DiSH

If you require the DiSH, you should configure it first. Ensure that the DiSH dashboard is
working with the servlet engine that you have integrated with Portal-in-a-Box (please refer
to the DiSH manual for details). It is recommended that you use the dashboard to
configure the DiSH.

DIH

If you require the DIH, you need to decide which mode you want to run it in:

• Mirror

The DIH distributes all the index data it receives to all the DREs that it is connected
to. The DREs are exact copies of each other which must all be configured in the
same way.

You should run the DIH in Mirror mode if you want to ensure uninterrupted service if
one of the DREs should fail. While one DRE is inoperable, data continues to be
indexed into its identical copies which at the same time are still available to return
data for queries. 

• Non-Mirror

The DIH distributes the index data it receives evenly across the DREs that it is
connected to. For example, if the DIH is connected to 4 DREs, it indexes
approximately one quarter of the data into each one of the DREs (individual
documents are not split up).

You should run the DIH in Non-mirror mode if the amount of data that you want to
index is too large for a single DRE. If the DREs that the Distributed Index Handler
indexes into are situated on different machines, the index process will require less
time.

DAH

If you require the DAH, you need to decide which mode you want to run it in:

• Mirror 

The DREs that the DAH distributes ACI actions to are identical (that is all of the DREs
are exact copies of each other, each one is configured the same way and contains
the same data). 



Planning, installing and configuring Portal-in-a-Box 4

Page 16

• Non-mirror 

The DREs that the DAH distributes ACI actions to are different (that is each DRE is
configured differently and contains different data). If you are running the DAH in Non-
mirror mode, you need to set up Virtual Databases that can be of the following types:

Combinator

The Virtual Database forwards an action command to all the databases that it
comprises. It collates and sorts the results before it returns them.

Distributor

The Virtual Database forwards an action command to one of the databases it comprises.
These databases must be identical (that is all of the databases are exact copies of each
other and contain the same data). The way it forwards the action is determined by the

distribution method.

Step 2: DRE configuration

Consider the following points for each Data or Content DRE you are setting up:

Default configuration

You should always review the default configuration. While the DRE will work "out-of-the-
box", its default configuration may not suit your personal environment. You need to
optimize its performance within your environment, and ensure that it will work smoothly
with the components that you are integrating it with.

Index file size

If you are indexing many small IDX files (files that contain less than 2K of text), you should
enable DelayedSync, so that the DRE stores index data every time it finishes indexing an
IDX or XML file or when a specified interval has elapsed.

Index fields

Decide which fields you want to use as index fields. Identifying index fields allows you to
optimize the query process when you restrict queries using these fields. This means that
index fields should hold data that you are likely to use frequently in order to restrict
queries. A typical example is to restrict the results returned by a query by document type.
The extension of each document can be extracted by the Connectors and added to a
*/FILEEXTENSION field.

While you should generally avoid querying non-indexed fields for performance reasons,
this is preferable to indexing fields that you are unlikely to use or whose content is
irrelevant to you (for example, NumPages or DRESection). Indexing all fields in
documents could potentially slow down the indexing process, increase memory usage and
disk requirements.



Planning, installing and configuring Portal-in-a-Box 4

Page 17

Preventing duplicate content

Decide which fields you want to use as reference fields (for example, */DRETITLE), and
set up a field process that identifies these fields as reference fields when a Connector
indexes documents into the DRE. 

Configure the DRE to eliminate duplicate copies of documents at index time by setting the
DRE's KillDuplicates parameter to one or more of the reference fields that you have
defined .

DRE databases

Configure the databases that you want the DRE to contain. You should give the
databases names that are indicative of the content that they will be storing. For example,
you could create a Marketing database to store data that will be indexed from a Marketing
network.

You will need the names of the databases when you configure the Connectors in order to
determine into which of the DRE databases the Connectors should index.

Security

If you require security, you should set up a field process that detects the security type of
documents, and configure settings that define how individual security types should be
treated.

Languages

If you want to index languages other than English into the DRE, you need to use
automatic language detection or a field process that determines the language of
documents:

• Automatic language detection (requires an additional license)

Allows the DRE to automatically detect the language and encoding of documents
when they are indexed. This is useful if you want to index a very large amount of data
that can comprise multiple languages and encodings (for example, if you want to
index company data that stems from international branches of the company, if you
want to index Russian documents that use different encodings or if you use the
HTTPFetch to spider data that could use multiple languages and encodings).

• A field process that determines the language and encoding of documents

You can set up a field process that identifies the language types of documents using
specific fields. This is useful if you are indexing documents that contain metadata
which identifies their language and encoding, as this guarantees the identification of
the language type to be accurate (due to the nature of data, a negligible number of
documents may not identified by automatic language detection).



Planning, installing and configuring Portal-in-a-Box 4

Page 18

You should also review the following language configuration settings as it is essential that
they are configured according to your requirements:

DefaultLanguageType

ProperNames

IndexNumbers

Note: if your project requires exact matches for search, you can disable Stemming.
However, it is generally not recommended to disable Stemming as this may have a
negative impact on query performance and for some languages decrease the relevance of
results (when conceptual queries are performed)

Step 3: Connector configuration

The configuration of the Connectors is the most important element in making the system
perform optimally. Consider the following points carefully for each Connector you are setting
up:

DIH

If you have installed a DIH, you need to ensure that the Connectors index into the DIH
instead of the DRE.

Run time and intervals

Consider how much time the Connectors will require to extract data, the DRE volume the
data will require and how long the indexing of the data will take. If you are using multiple
Connectors that are located on the same machine, you should ideally configure them to
run when other processes are not system intensive (for example, at night), and ensure
that they don't all run at the same time. 

Make sure the Connectors run in sensible intervals, and that the requests they make are
appropriate for the source from which they are aggregating (for example, if you use
HTTPFetch, you should ensure that it does not send too many requests to a site, as it
may otherwise be blocked as a malicious spider).



Planning, installing and configuring Portal-in-a-Box 4

Page 19

Security

If you want to use mapped security, you need to configure the Connectors to retrieve the
security information of documents. The document ACLs are then encrypted and mapped
to a DRE field.

Note that for the AutoIndexer you can install the ACLCheck security plug-in which allows
you to check if documents' ACLs change and update them accordingly in the DRE. The
ACLCheck security plug-in is available on request.

Quality of content

You should only index content that is useful to the intended purpose for the Autonomy
application. Identify which parts of document content you want to use (for example what
field or metadata a Connector should index as a document's title), and which parts you
don't want to use. Some common considerations are:

• Import useful information about documents into fields. For example, if you want
information about the size and the type of documents that are indexed into the DRE
to be available, you could specify the following import settings in your Connector's
configuration file:

ImportExtractLength=1
ImportExtractLengthToField=FILESIZE

ImportExtractExtension=true
ImportExtensionToField=FILEEXTENSION

• Remove repetitive strings within the content. If a document, for example, contains
multiple copyright strings (Copyright 2003 Autonomy Corporation), there is no
reason to index all of them. You can usually remove such elements by defining the
start point and end point of the text that you want to index.

• Discard Excel documents. Unless you are dealing with XLS documents that contain
rich textual content or the indexing of numeric data has a specific use for you, it is
counterproductive to set the Connectors to import these files.

• Restrict the size of documents that the Connectors are permitted to process. The
import process can waste a lot of time processing excessively large documents that
may be just images. Use MaxSize to set a maximum size for documents that are
processed by the Connectors (this can also be useful for handling XLS documents).

Synonyms

If your project involves searching for product or company names, you should consider
enabling synonym querying in the DRE and creating a synonym file that lists the required
product or company names alongside common misspellings.



Planning, installing and configuring Portal-in-a-Box 4

Page 20

Content distribution

Determine into which DRE databases the Connectors should index the content that they
aggregate. You can divide content between DREs and their databases according to the
following methods:

• Allocate a DRE database to each content store of the source repository.  You can, for
example, set up a DRE database per Notes database, and then restrict users to only
be able to query this particular source.  This would entail a maintenance overhead but
also allow administrators to view the exact number of documents that is available for
each source.  

• Group the aggregated content into thematic databases. You can, for example, store
all Exchange and Notes content in an “internal email” database.

Preventing duplicate content

If you have configured the DRE to remove duplicate content, the DRE's method of
deduplication is used by default. You can, however, configure your Connectors to override
the DRE's deduplication method:

• If you are only indexing IDX files, a document's DREREFERENCE is usually used to
identify and remove duplicate content. This, however, is often not adequate if
identical content has been duplicated across the content sources.  If this is the case,
it is practical to create a unique reference field value by combining various fields (for
example, a DUPLICATES field that combines a DRETITLE, FILESIZE and
FILEEXTENSION field), and configuring the Connectors to use this field to identify
and remove duplicate content. Use the Import module's FieldGlue settings to create a
unique field (the Import module is included in each one of your Connectors).

• You should avoid removing duplicate documents using the REFERENCEMATCHnn
option, if it is imperative to index as much of the content as possible.
REFERENCEMATCHnn identifies duplicate concepts rather than content, and is
likely to discard a great deal of good quality content if you set it to a low value.

PDF files

If you are using your Connectors to import PDF files, you should note that it is possible to
both highlight matching link terms within a document and link to the relevant section of the
PDF. This highlighting functionality is available on request.



Planning, installing and configuring Portal-in-a-Box 4

Page 21

Notes Fetch

If you are integrating your Notes Fetch with your Portal-in-a-Box installation, you should
note that by default this Connector maps all the metadata that is stored with a Notes
document to fields of the same name in the DRE.  As DRE4 stores all fields this can be
costly in terms of space usage. However, you can avoid this problem by doing one of the
following:

• Set MapAll to false to prevent the Notes metadata from being mapped to equivalent
DRE fields, and map only Notes fields you require to DRE fields (when configuring
individual fetch jobs).

• Define CantHaveCSVs in the DRE configuration file to prevent the DRE from storing
fields that are not required.

Step 4: Test index

Configure AutoIndexer to aggregate from a specific location on disk, and store about 10 files
of various types (PDF, XLS, DOC, XML and so on) in this location. Start AutoIndexer and
check the indexing of the files by sending an IndexerGetStatus command and some test
queries to the DRE. Check if AutoIndexer has treated the different file types as you have
specified, and if all the metadata that you require is available.

Step 5: Adjusting the DRE configuration

Make any required adjustments to the configuration of your Content or Data DREs.

Step 6: Adjusting the Connector configuration

Make any required adjustments to the configuration of your Connectors.

Step 7: Index 

Start your Connectors to index your data into the DRE. Make sure you always use as much
cache as possible, but be careful to reduce the index cache and increase the query cache
once the main indexing job has been completed. Do not set the caches to more than about
75% of the available RAM (when added together) as you may run out of RAM and cause the
DRE to fail.



Planning, installing and configuring Portal-in-a-Box 4

Page 22

Step 8: Classification Server configuration

Configure the Classification Server. Please consider the points addressed in the chapter
Clustering with Classification Server before you start the configuration.

Step 9: Front end customization

The customization of the front end determines the Portal's user-friendliness. In order to
ensure that the Portal meets the needs of your environment, you should consider the
following points:

Functionality display

Decide which elements of the product are most useful for the end users. You should
configure the front end to display particularly useful features by default, so they can easily
form a part of the users' general work flow.

Useful information

If you have identified information in your data that users will generally require and
configured your Connectors to import this information, you should consider if you want to
display some or all of it alongside results by default. You could, for example, modify the
Portal JSPs to display the author, creation date, file type and file size of a document when
this document is displayed as a result.

Step 10: UAServer configuration

Configure the UAServer in accordance to the security setup you require:

If you are using a version 4 security type you must set CaseSensitiveUsernames and
CaseSensitiveGroupNames to false in the configuration file section that sets up the
security type. 

(A version 4 security type is one for which the value that you specify with the Type
parameter in the DRE configuration file section that sets up the security type contains the
string "V4". For example, Type=AUTONOMY_SECURITY_V4_NT_MAPPED).



Planning, installing and configuring Portal-in-a-Box 4

Page 23

Step 11: Setting up users

You can create a user structure for Portal-in-a-Box in a number of ways. You should
consider the following points in order to set up a user structure as efficiently as possible:

Creating a user structure from scratch

Before you create users, you need to set up roles and define their permissions. Once you
have done that you can create users from scratch using one of the following methods:

• You can create each user yourself from the Portal's administrative pages, and
allocate this user to one or more roles.

• You can give users passwords that enable them to register as a Portal user and
allocate them to appropriate roles.

Importing a third party user structure 

You can use the UAServer to import an existing third party user structure into the Portal
(using the DeferLogin option):

• If the user structure that you are importing is connected to a group server (for
example, Notes, NT or Documentum), you can use the UAServer's
SyncRolesFromGroups option to automatically create a role for each legacy group. 

• If you are importing an LDAP user structure, you can configure the UAServer to
import the users' details into user fields (using IndexFieldCSVs).

Default user creation

Portal-in-a-Box creates a default user for you. The default user role is given to any user
who uses the Portal without registering, and sets how much of the Portal's functionality a
user who has not registered can access. This means that you need to customize the
default user in order to assure appropriate access rights apply to him. 

Template user creation

You should create a template user for each of the roles that you have set up within your
Portal. A template user serves as a template for a User interface that is specific to a
particular role. You can thus create a different User interface for each role, which is
displayed when a user logs in to the Portal for the first time (before he customizes the
Portal).



Planning, installing and configuring Portal-in-a-Box 4

Page 24

Step 12: Testing users

Before your Portal becomes live, it is recommended that you log in to the Portal using the
different template users (which your administrative status allows you to access) and test if
you have set up the roles permissions correctly. 

You should also permit a small number of users to log in to the Portal and test its setup. This
provides you with feedback that allows you to ensure that the Portal is optimized for the
different roles.



Modifying configuration files

Page 25

3. Modifying configuration files

Modifying configuration parameter values

Applying modifications to configuration files

New configuration settings only take effect once the service is stopped and restarted.

Entering Boolean values

For parameters that require Boolean settings the following settings are interchangeable

TRUE = true = ON = on = Y = y = 1

FALSE = false = OFF = off = N = n =0

Entering string values

If the value that you want to enter for a parameter that requires a string contains quotation marks, you
must put the value into quotation marks and escape each quotation mark that the string contains by
putting a slash in front of it.

For example:

FIELDSTART0="<font face=\"arial\"size=\"+1\"><b>"

Here the beginning and end of the string is indicated by quotation marks while all quotation
marks that are contained in the string are escaped.

If you want to enter a comma separated list of strings for a parameter, and one of the strings contains
a comma, you must indicate the start and the end of this string with quotation marks. 

For example:

ParameterName=cat,dog,bird,"wing,beak",turtle

If any string within a comma separated list contains quotation marks, you must put this string into
quotation marks and escape the quotation marks in the string by putting a slash in front of them.

For example:

ParameterName="<font face=\"arial\"size=\"+1\"><b>",dog,bird,"wing,beak",turtle



Modifying configuration files

Page 26



Extracting document titles

Page 27

4. Extracting document titles

Informative document titles reduce the amount of time that the user spends sorting through sets of
results. A good title should uniquely identify a document and give some idea of its content.
Meaningless titles, such as "CNN: News" or "doc123456", can result in time wastage and extra cost,
as the user has to look beyond the title for each document in order to find out anything about its
content.

Document titles are stored in the DRETITLE field when documents are indexed into the DRE. By
default, the "Title" field of the document is extracted for this purpose, but you can configure the Import
module and Connectors in order to change the title that the DRE stores in one of the following ways:

• Generate a title from a document's content

• Manipulate a title field before extracting a title from it

• Specify a field to extract titles from 

Generating titles from a document's content

The following Import module settings in you Connector's configuration file allow you to change the
way titles are extracted from documents. 

Note: if you are generating titles from a document's content, it is important that you set the Import
module to import good quality content. See the Content chapter for details of how to do this.

ImportIntelligentTitleSummary

Enter true to generate a unique intelligent title and summary for the documents that are
imported into the DRE. An intelligent title and summary are generated by conceptually
comparing each document title and summary with the next. If the document title is in use
already as another document's title field, then the import module extracts a unique title from
the conceptual content of the document. 

The default value for this setting is false.

ImportMinTitleChars

Allows you to specify the minimum number of characters that can be used as a title for
imported documents. If a title of less than the specified number of characters is found, the title
is taken from the document content instead. By default, ImportMinTitleChars is set at 3.



Extracting document titles

Page 28

ImportTitleSkipWords

Enter the number of words that you want to skip before obtaining a title from the document. By
default this is 0.

ImportSectionTitles

Enter true to import each document section with a different title taken from the anchor.
Enter false to turn off the titles for each section of a document, so that each section is
imported with the same title. This is useful when spidering E-commerce sites that contain an
anchor for each product. Disabling the individual section titles means that you can use
Autonomy’s Distributed Query Handler (DQH) to duplicate by title later on (since each review
will have the same title).

The default value for this setting is false.

Manipulating title fields before extracting a title 

If your documents' titles regularly contain useless characters or strings, you can set import field
processing parameters in your Connector's configuration file in order to remove those characters
before the Import module generates titles. 

Please refer to the Import module documentation for details of these settings.



Extracting document titles

Page 29

Specifying a field to extract a title from

A document's title field may not always be the best from which to set the DRETITLE field (for
example, if there are a number of documents with the same title). You can specify another field that
you want to map to the DRETITLE field with the following settings in the Import module's
configuration file:

ImportRemapFieldn

Specify the fields whose value you want to remap to the value of the corresponding
ImportRemapFieldTon fields. 

ImportRemapFieldTon

Specify the fields in which you want to store the values of the corresponding
ImportRemapFieldn fields. 

For example:

ImportRemapField0=Description
ImportRemapFieldTo0=*/DRETITLE

In this example, when a document is imported, the contents of a document's Description field
are saved as the DRETITLE field for the document.

HTML documents

The content of the <TITLE> field of an HTML file doesn't necessarily reflect the content of the HTML
page. You can specify any of the other fields contained in the HTML with ImportRemapFieldn.

Non-HTML documents

You can specify any of the fields contained in your documents with ImportRemapFieldn. 

If you want to view the fields that the Import module slave for your documents' format has extracted
from the document, use the following command:

On NT: <slave>.exe <file_name1>.<file_extension> <file_name2>.html

On UNIX: <slave>.exe -cmd convert <file_name1>.<file_extension> <file_name2>.html

For example, using PDF slave:

On NT: pdfslave.exe <file_name1>.pdf <file_name2>.html

On UNIX: pdfslave.exe -cmd convert <file_name1>.pdf <file_name2>.html



Extracting document titles

Page 30

<file_name1>
Enter the name of a PDF file for which you want to find out field names.

<file_name2>

Enter the name of the HTML file to which you want to write the results of this command.

The HTML file that is produced contains, for example:

<META NAME="CreationDate" CONTENT="D:20010419185953">

<META NAME="Producer" CONTENT="Acrobat Distiller 4.0 for Windows">

<META NAME="Title" CONTENT="042001_TVLY_SMF_Note">

<META NAME="Keywords" CONTENT="TVLY">

<META NAME="ModificationDate" CONTENT="D:19990912205731">

<META NAME="Subject" CONTENT="pdfmark 2.0">

<META NAME="MyKey" CONTENT="HQ Document Publishing">

<META NAME="Creator" CONTENT="Hand Programmed">

<META NAME="Author" CONTENT="Steve Fitzgibbons">

<META NAME="ModDate" CONTENT="D:20010419185954-07'00'">

Lotus Notes

Lotus Notes is a very meta-data-rich content source as it stores all documents within a structured
format, which is determined by the design of the database. The title field of Notes documents is
unlikely to be a useful document title. You can set another field with the following setting in the Notes
Fetch configuration file:

NotesTitleField

Specify the name of the field in the Notes database that is mapped to the DRETITLE field in
the DRE.

For example:

NotesTitleField=Author

The best approach for determining what fields are contained in your Notes database is to fetch a
sample set of the content and allow the Connector to create the IDX file but not index this into the
DRE. View the structured IDX file in order to see which field is best suited as the document title.
Please refer to the Create structured IDX files without indexing documents into the DRE section
in the Configuring data storage chapter for details of how to create the IDX file for this purpose.



Generating document summaries

Page 31

5. Generating document summaries

Good summaries of result documents enable the user to tell at a glance which documents are most
useful to them. Autonomy has the ability to generate real-time conceptually relevant summaries that
can be influenced by why the user asked the question.

The quality of summaries depends on the content that you have imported and indexed. Please refer
to the Good quality content chapter for details of how to optimize the quality of your content.

By default, no summaries are produced, but you can instruct the Import module and the DRE to
generate summaries automatically during indexing and when queries are sent to the DRE. Unless
you specify otherwise, these summaries are stored in a document's Summary field. The most
appropriate time to generate summaries depends on the kind of summaries you expect to use:

Summary
generated during:

Usage: Where to make settings:

importing / indexing Summaries need to be generated just
once - for example because you expect
the same kind of summary to be required
for all result documents

• Import module settings in
your Connector
configuration file (DRE 4) 

• DRE configuration file (DRE
3 only)

querying Summaries need to be generated
frequently - for example because you
expect different queries require different
kinds of summaries
(context/content/quick)

• DRE 4 configuration file,

• query string sent to DRE 



Generating document summaries

Page 32

Generating summaries during importing / indexing
 

Generating summaries during importing with the Import module

If your DRE version is DRE 4, and you want to include summaries when documents are indexed into
the DRE, you can set the following Import module parameters in your Connector's configuration file:

ImportSummary

Enter true to import the first sentences of documents as a summary into the DRE. You can
specify the number of sentences using ImportSummarySize.
Enter false if you don't require a summary. This is the default.

ImportSummarySize

If you have set ImportSummary to true, you can specify the number of sentences that you
want to import into the DRE as a document summary. The sentences are taken from the start
of the document. The default value for this setting is 3.

ImportIntelligentTitleSummary

Enter true to generate a unique intelligent title and summary for the documents that are
imported into the DRE. During the importing process titles and summaries that are repetitive
across an import branch are deleted.

By default this is set as false.

Generating summaries during indexing with DRE 4 / AXE

DRE 4 / AXE does not allow you to generate document summaries during indexing. You can use
summaries generated by the Import module, or generate summaries when you send queries to the
DRE.



Generating document summaries

Page 33

Generating summaries during indexing with DRE 3

DRE 3 allows you to generate summaries at index time. The following settings in the DRE 3
configuration file's [Server] section allow you to set the kind of summaries that are generated:

SummaryOverride

Enter true to enable the DRE to overwrite summary fields with its own summary. This is the
default.

[IndexSummary] section

Method

Allows you to specify the kind of summary you want to create. You can set Method with the
following values:

CONCEPT

Generates a conceptual summary of the document.  A concept summary comprises
sentences that are typical of the document’s content (these sentences can be from
different parts of the document).

QUICK

Generates a quick summary of the document. A quick summary comprises the first few
sentences of the document. 

NONE

No summary is generated. This is the default.

MinWords

If you have set Method to QUICK, enter the minimum number of words that the quick
summary should consist of. By default this is 0.

MaxWords

If you have set Method to QUICK, enter the maximum number of words that the quick
summary should consist of. By default this is 0.

Sentences

If you have set Method to CONCEPT, enter the number of sentences that the concept
summary should have. By default this is 0.



Generating document summaries

Page 34

FieldNum

Enter the number of the field in which you want to store the summary.

Configuration file example

The following shows an example of a section of the DRE configuration file:

[Server]

SummaryOverride=true

[IndexSummary]

Method=Concept

Sentences=4

FieldNum=3



Generating document summaries

Page 35

Generating summaries during querying

Generating summaries during querying with DRE 4

You can instruct the DRE to return summaries along with results for the following actions: 

• Query

• Suggest

• SuggestOnText

• Summarize

Summaries are generated for each result document during the query. Include the following
parameters in the query/command string for these actions in order to specify the kind of summary and
length of summary that you want:

• Summary=<summary_type>

• Sentences=<length_of_summary>

For example:

http://<IP_address>:<aci_port>/action=query&Text=<query_text>&Summary=
<summary_type>&Sentences=3

Summary=<summary_type>

You can set the following values for <summary_type>:

Concept

Returns a conceptual summary of the result document.  A concept summary comprises
sentences that are typical of the result's content (these sentences can be from different
parts of the result document).

Context

Returns a conceptual summary of the result document that is biased by the terms in the
query Text and/or FieldText. A context summary comprises sentences that are
particularly relevant to the terms in the query (these sentences can be from different parts
of the result document).

Quick

Returns a brief summary of the result document. A quick summary comprises the first few
sentences of the result document.

Off

No summary is returned. This is the default setting for the Summary parameter.



Generating document summaries

Page 36

Sentences=<length_of_summary>

If you have set Summary to Concept, Context or Quick, you can specify the number of
sentences that you want the summary to comprise with the Sentences parameter. By default
this is set to 5.

For example:

http://1.23.45.67:2000/action=query&Text=perennial flowering
plants&Summary=Concept&Sentences=3

DRE 4 configuration file settings

The following DRE configuration file settings allow you to manipulate the summaries that are
produced as a result of queries to the DRE:

ContextSummaryQueryTermWeight

If you have included the Method parameter with the setting Context in a query/command, the
DRE determines the weights to use for the terms in the query from the
ContextSummaryQueryTermWeight setting in the configuration file. Enter a number for the
weights that you want context queries to use. By default this is 255.

MinWordsPerSentence

If you have included the Method parameter with the setting Concept in a query/command, the
DRE uses the MinWordsPerSentence setting in the configuration file to determine the
minimum number of words that a sentence must comprise in order to be considered as a
sentence that can be used in the concept summary. The default value for this setting is 8.

MaxWordsPerSentence

If you have included the Method parameter with the setting Concept in a query/command, the
DRE uses the MaxWordsPerSentence setting in the configuration file to determine the
maximum number of words that a sentence must comprise in order to be considered as a
sentence that can be used in the concept summary. The default value for this setting is 35.



Generating document summaries

Page 37

Generating summaries during querying with DRE 3

You can include the following xoptions in the query string that you send to DRE 3 in order to generate
summaries during querying:

http://<IP_address>:<query_port>/qmethod=q&querytext=<query
string>&xoptions=<x_option>

xoptions=<x_option>
You can use the following values for <x_option> in order to specify the kind of summary that
you want your query to return (the summary is returned in the Summary field:

withsummary

Returns a quick summary of the result document. A quick summary comprises the first
few sentences of the result document. 

For example:

http://1.23.45.67:2002/qmethod=q&querytext=perennial flowering
plants&xoptions=withsummary

conceptsummaryN,LL

Returns a conceptual summary for each result document. The summary comprises
sentences that are typical of the result's content (these sentences can be from different
parts of the result document). The summary comprises N sentences and up to LL
characters and is biased towards the key concepts in a document.

For example:

http://1.23.45.67:2002/qmethod=q&querytext=perennial flowering
plants&xoptions=conceptsummary3,150

contextsummaryN,LL

Returns a conceptual summary for each result document that is biased by the context in
the query text. The summary comprises sentences that are particularly relevant to the
terms in the query (these sentences can be from different parts of the result document). It
comprises N sentences and up to LL characters and is biased towards the context in the
query text.

For example:

http://1.23.45.67:2002/qmethod=q&querytext=perennial flowering
plants&xoptions=contextsummary3,150



Generating document summaries

Page 38



Improving document content

Page 39

6. Improving document content

Content breaking

It is usually advisable to break large documents into smaller chunks before they are indexed into the
DRE. If you don't do this, it is more difficult to identify the relevant sections of documents - for
example, if a 100-page document is returned as a query result, the user can't easily assess its
relevance or find which section is relevant to their query.

Settings in the DRE configuration file and Import module settings in your Connector's configuration
file allow you to break documents up before they are indexed.

Content breaking with the Import module

The following Import module settings in your Connector's configuration file allow you to control the
way in which large documents are broken up during importing. If you break documents up, the
smaller documents are indexed separately, but the DRE records that they are parts of the larger
document.

ImportBreaking

Enter true if you want to split large documents into smaller documents before they are indexed
(recommended). 

If you enter false large documents are not split up into smaller documents, with the exception
of the following (this is the default):

• HTML documents are split up at any anchors in the page, regardless of the number
of words between the anchors.

• PDF documents are split up on every page regardless of the number of words on
each page.

Note:  if you enable ImportBreaking and you are using an earlier DRE version than DRE 4,
you should set Combine to 1 in the configuration file of the DRE into which you are indexing
the documents.

ImportBreakingMaxParagraphWords

If you have enabled ImportBreaking, ImportBreakingMaxParagraphWords allows you to
specify the maximum size of the sections that a document is broken into. If a document is
larger than ImportBreakingMaxParagraphWords, the Import module splits the document at
the first sentence end after ImportBreakingMinParagraphWords, or at
ImportBreakingMaxParagraphWords if no sentence end is found earlier. By default, the
value of this setting is 360.



Improving document content

Page 40

ImportBreakingMinParagraphWords

If you have enabled ImportBreaking, ImportBreakingMinParagraphWords allows you to
specify where you want section breaks to occur. The Connector splits documents at the end of
the first sentence after the number of words you specify with
ImportBreakingMinParagraphWords, or at ImportBreakingMaxParagraphWords if no
sentence end is found earlier. By default the value of this setting is 160.

ImportBreakingMinDocWords

Enter a number of words that a document must contain to be split up into smaller documents
(provided ImportBreaking is enabled). Any document that contains less than the number of
words you specify is imported whole. The default value for this setting is 360. 

Note:

• The Connector attempts to split up the document at the end of a sentence within the
range you specify with ImportBreakingMinParagraphWords and
ImportBreakingMaxParagraphWords. 

• ImportBreakingMinDocWords must be greater than
ImportBreakingMinParagraphWords.

Example configuration

The following is an example of settings in a Connector configuration file, which sets up content
breaking during importing:

ImportBreaking=true

ImportBreakingMinDocWords=500 

ImportBreakingMinParagraphWords=400

ImportBreakingMaxParagraphWords=600

In this example, ImportBreaking is enabled, so the Import module breaks all documents that contain
more than 600 words into sections. A new section starts at the end of the first sentence after 400
words, or at exactly 600 words if there is no sentence end earlier. 



Improving document content

Page 41

Content breaking with the DRE

If your DRE version is DRE 4, the following settings allow you to control the way in which large
documents are broken up during indexing.

MaxFieldLength

If a field contains less than the specified number of characters it is not broken into sections.
The default value for this setting is 100.

MaxSectionLength

Specify the maximum number of characters that a document can contain before it is broken
into sections. The default value for this setting is 1000.



Improving document content

Page 42

Good content

The configuration of the Connector to retrieve good, contextually rich content is vital. Connectors are
highly configurable to allow you to ensure good content is aggregated, and irrelevant or misleading
information (for example, tables of contents) is ignored. Settings in the Import module and DRE
configuration files allow you to specify the following:

• Minimum and maximum size that documents must be in order to be indexed

• Strings, HTML tags or number of words that indicate the start and end of document
content that you want to index

• Tags or strings that delimit the start and end of sections of document content that you
want to index

• Strings that a document must contain in order to be indexed

• Strings that a document must not contain in order to be indexed

• White space or specified strings that you want to remove from documents before they are
indexed

• XML tags that you want to remove from documents before they are indexed

• Strings or tags that you want to replace with other strings

• Date formats that should be recognized during indexing

Please refer to the DRE and Import module documentation in order to determine which settings you
can make for the documents you want to index.

Proper names and extended concepts

If your DRE version is DRE 3, you can set the DRE to index names that consist of several words as
one word with the following parameter in the DRE configuration file:

ProperNames (DRE 3)

Enter on to index names that consist of more than several words as one word. The name
William Shakespeare, for example, would be indexed as one word. This is the default setting.

Enter off if you want all names to be indexed as individual words.



Improving document content

Page 43

If your DRE version is DRE 4, this functionality is also applied to other extended concepts:

ProperNames (DRE 4)

Enter one of the following to determine how the DRE treats terms that form a unit (for
example, "William Shakespeare" or "heart attack":

0 The DRE stores each term individually. (For example, it stores "William",
"Shakespeare", "heart", and "attack".)

1 The DRE stores each term individually and as a unit, if the terms in the unit begin
with capital letters. (For example, it stores "William", "Shakespeare", "William
Shakespeare", "heart" and "attack".)

2 The DRE stores each term individually and as a unit. (For example, it stores
"William", "Shakespeare", "William Shakespeare", "heart", "attack" and "heart
attack".)

Stop lists

Stop lists, which are lists of words that should be ignored, allow you to specify words and phrases
that should be removed from the content that is indexed because they lack meaning. You do not
normally need to edit the stop list that is provided with your Autonomy product, but it can be helpful to
add unwanted words and phrases that occur regularly in your documents to the stop list. 

This is particularly beneficial for the stop lists that Categorizer or Classification Server uses. For
example, if all your documents include a copyright statement, you could add this to the stop list to
which Categorizer or Classification Server refers in order to prevent it from being included in
taxonomies that the products generate.

Languages

If you want to implement stemming with DRE 3, you must ensure that you set the following
parameters correctly, so that the stemming algorithm and DRE language match:

StripLanguage Implements stemming and specify the stemming algorithm

CharConv Sets the language in which the DRE is running

Please refer to your DRE documentation for a list of the values that these parameters should take.

Note: if your DRE version is DRE 4, you do not need to make these settings. Where stemming is
available, the correct algorithm is automatically selected when you specify the DRE language and set
Stemming to true in the [LanguageTypes] section of the DRE configuration file.



Improving document content

Page 44

Indexing metadata

You can configure the Connector you are using to retrieve data from your repositories to extract
metadata, which you can store in fields alongside documents that you index into the DRE. It is
sometimes tempting to store all metadata for a document just in case it is needed. This is inefficient: it
increases document sizes, which slows down importing and indexing, and unnecessarily increases
the size of the DRE, which slows down querying. Instead, you should consider the kinds of query that
will be sent to the DRE, and the metadata that you need to display, and index only the metadata that
is needed. 

In addition to indexing only the metadata that you need, it is important for query performance that you
index metadata into the most useful kind of field. The following make querying more efficient:

• index fields

• numeric fields and numeric date fields 

Setting up index fields

If a field is going to be used frequently, you can set it up as a DRE index field (using the DRE's
configuration file) in order to optimize the query process when you restrict queries using these
fields. This means that the field is stored in the DRE's internal files, which enables faster
access to the data in the field. Index fields should hold data that is particularly significant to
you (for example the title of the document), and that you are likely to use frequently in order to
restrict queries. 

Please refer to the Storing and indexing fields section in the Configuring the DRE chapter
of the DRE manual for full details of how to add a field process to the DRE configuration file in
order to set up index fields.

Setting up numeric fields and numeric date fields with memory mapping

You can configure the DRE to identify fields that contain numerical values. General numeric
values are stored in numeric fields, and date values are stored (as epoch seconds) in numeric
date fields. When these fields are queried, the DRE stores them in a fast look-up table in
memory (in the numeric subdirectory of the main DRE installation directory) so it can quickly
return the field.  

Fields that the DRE identifies as numeric fields or numeric date fields are used during the pre-
filtering stage of the query process, to reduce the number of documents that the DRE
searches for conceptual matching. (Please refer to the Optimizing querying section of the
Improving DRE performance chapter for details of the query process.)

Please refer to the Setting up memory mapping to speed up numerical queries section in
the Configuring the DRE chapter of the DRE manual for full details of how to implement
memory mapping for your fields.



Configuring data storage

Page 45

7. Configuring data storage

Checking your data is indexed into the DRE

If you are encountering problems with indexing data into the DRE, you can perform the following
actions in order to check on the progress of the importing and indexing processes.

1. Check the Connector's log file

A Connector's log file tells you how many files are being passed to the importing stage and gives
a reason for certain files are being ignored. 

If some of your files are not reaching the importing stage, ensure that the following are set up
correctly in the Connector's configuration file:

• the security details that you set for the Connector must allow the Connector
to access all the documents that you want to index

• documents must match the configuration file's settings for document size
and format 

2. Create an Import log file

You can view a log of the importing process when you run a Connector, which tells you which
files are failing to import and for what reason. In order to create an import.log file which shows
the details you need to see, make the following settings in the Connector's configuration file:

ImportLogFile=import.log

ImportLogLevel=full

ImportLogFileAppend=true

Please refer to the Import module documentation for details of these settings.

3. Create a structured IDX file without indexing documents into the DRE

You can check whether all your files are making it into IDX format by creating a structured IDX
file without indexing documents into the DRE. This allows you to view all the documents which
have successfully passed through the importing process.

Run the Connector once on a sample of your data. Ensure that the following settings are made in
the Connector's configuration file: 

• use false settings for the DRE into which the Connector indexes data

• set the Connector to cycle just once



Configuring data storage

Page 46

• set BatchProcess to Import

• set MapAll to true (this means that document fields are mapped to DRE fields of the
same name, which enables you to see the original document field names in the IDX file)

When you run the Connector, an IDX file (or TMP file if you are using AutoIndexer) is written to
your working directory, or to your index directory if you have specified one in the configuration
file.

For example, if you are using Notes Fetch, you should make the following settings in the
[Default] section of the configuration file: 

DRE=1.1.1.1

SpiderCycles=1

BatchProcess=Import

MapAll=true

4. Check the DRE log file

If your documents are being imported successfully, the DRE log file should contain details of
problems encountered during the indexing process, for example your documents may be being
overwritten or rejected by some DRE configuration setting.

You should also check that your documents are not being expired too quickly. Please to refer to
the Setting expiry time section in this chapter for details of how to set up expiry correctly.



Configuring data storage

Page 47

Removing duplicates during indexing

To make the most efficient use of your system, you can remove duplicate documents during the
indexing process. This maintains the quality of the data in your DRE and improves the efficiency of
queries, but may slow down the indexing process. 

By default, any duplicate documents are indexed into the DRE, but you can set the DRE to look for
duplicates at index time, remove any that it finds and index only the new document with the
KillDuplicates parameter. The KillDuplicates parameter allows you to specify which fields must
match in order for two documents to be considered duplicates. The way in which you can set this
depends on what DRE version you are using.

Removing duplicates with DRE 4 / AXE

In DRE 4 / AXE, you can use the KillDuplicates parameter both in the configuration file and as an
optional parameter for the DREADD command. 

For example in the configuration file:

KillDuplicates=<value>

For example with the DREADD command:

http://<IP_address>:<index_port>/DREADD?<file_name>&KillDuplicates=<value>  

Note that this setting overrides the setting in the configuration file for the documents you
specify with DREADD.

<IP_address>

Enter the IP address of the DRE into which you want to index your data.

<index_port>

Enter the port number for the DRE into which you want to index your data.

<file_name>

Enter the name of the file that you want to index.



Configuring data storage

Page 48

<value>

Enter one of the following values for KillDuplicates:

NONE

The file is indexed and the DRE does not check for duplicates. This is the default.

REFERENCE

If a document is indexed that has the same reference as a document that the DRE
already contains, the DRE deletes the document that it already contains and replaces it
with the new one.

REFERENCEMATCHnn

If a document is indexed whose content is more that nn percent similar to the content of a
document that the DRE already contains, the DRE deletes the document that it already
contains and replaces it with the new one. 

Note:  this setting slows down the performance of your DRE, and should be avoided
unless Autonomy has advised you to use it. If you do use this setting, the nn value should
normally be greater than 90 %.

<FieldName>

If a document is indexed that contains a <FieldName> field with the same content as the
<FieldName> field in a document that the DRE already contains, the DRE deletes the
document that it already contains and replaces it with the new one.

For example:

DRE 4 example:

KillDuplicates=*/DOCUMENTID

In this example, if the value of the DOCUMENTID field for a new document matches the
value of the field for an existing DRE document, then the DRE deletes the document that
it already contains. 



Configuring data storage

Page 49

Removing duplicates with DRE 3

In DRE 3, KillDuplicates is an optional parameter for the DREADD command. 

For example:

http://<IP_address>:<index_port>/DREADD?<file_name>&KillDuplicates=<value> 

<IP_address>

Enter the IP address of the DRE into which you want to index your data.

<index_port>

Enter the port number for the DRE into which you want to index your data.

<file_name>

Enter the name of the file that you want to index.

<value>

Enter one of the following values for KillDuplicates:

NONE
The file is indexed and the DRE does not check for duplicates. This is the default.

REFERENCE
If data is indexed that has the same DREREFERENCE as a document that the DRE
database into which you are indexing already contains, the DRE deletes the document
that it already contains and replaces it with the new one. If you want to check all the
databases in the DRE, enter REFERENCE2.
 

REFERENCEMATCHnn
If a document is indexed that has the same DREREFERENCE as a document that the
DRE database into which you are indexing already contains or if its content is more than
nn percent similar to the content of a document that the DRE already contains, the DRE
deletes the document that it already contains and replaces it with the new one. If you want
to check all the databases in the DRE, enter REFERENCE2MATCHnn.

Note: using ReferenceMatchnn will slow down the indexing process as the DRE has to
check the content of all documents that have the same DREREFERENCE as the one that
you are indexing. 



Configuring data storage

Page 50

MATCHnn
If a document is indexed whose content more than nn percent similar to the content of a
document that the DRE already contains, the DRE deletes the document that it already
contains and replaces it with the new one. 

Note: using Matchnn will slow down the indexing process as the DRE has to check the
content of all the documents it contains.

_<FieldNameA>_<FieldNameB>…
Allows you to specify one or more fields that the document that you are indexing contains.
If the DRE already contains a document that has the same fields, the DRE deletes the
document that it already contains and replaces it with the new one.

For example:

KillDuplicates=_DOCUMENTID_DRETITLE

In this example, if the value of the DOCUMENTID and DRETITLE fields for a new
document match the value of the fields for an existing DRE document, then the DRE
deletes the document that it already contains. 

If you want to check all the databases in the DRE, you should use the following format:

KillDuplicates=_<FieldNameA>2_<FieldNameB>

For example:

KillDuplicates=_DOCUMENTID2_DRETITLE

Note: 

• If you want to specify multiple fields, you must separate them with underscores
(there must be no space before or after an underscore). You must also enter an
underscore before the first field that you are specifying.

• Using the _<FieldNameA>_<FieldNameB>… parameter will slow down the
indexing process as the DRE has to check the fields of all the documents it
contains.

• Any fields that you use here must be declared as reference fields in the DRE
configuration file. 



Configuring data storage

Page 51

Setting expiry time

If you have not set your Connectors to update the data in the DRE, you must set the DRE
configuration file to not expire data or you will lose your data. Set Expire in the [Schedule] section of
the DRE configuration file to false.

If you set Expire to true, you can set ExpireTime in the [Databases] section of the configuration file
with the number of hours before data expires, or (if your DRE version is DRE 4) with 0 if you don't
want data to expire from that database. 

For DRE 4, you can specify expiry time per document by setting ExpireDateType in the [Properties]
section of the configuration file to true (use PropertyFieldCSVs to specify the fields that hold the
expiry dates for your documents).



Configuring data storage

Page 52



Setting up security

Page 53

8. Setting up security

For details of how to set up security in Autonomy products, please refer to the IAS manual. (This
includes a description of the differences between security in DRE 3 and DRE 4.)

This chapter outlines some general security considerations for setting up your Autonomy software
infrastructure.

Performance

• Restrictive security in documents can slow down DRE query speed, even if you have
implemented mapped security. You can significantly reduce the loss of performance of your
system by distributing documents between multiple DREs.

• Connector operations with NT and NetWare can be slowed down by the ACL extraction for each
document if you have implemented mapped security for these document types. You should bear
this in mind when determining how frequently you want to update DRE documents.

• Queries can be slowed down by incorrect security settings for a user. In order to reduce time
wastage here, ensure that user security roles and groups are set up correctly in the front-end
application (if you are using Portal-in-a-Box) and UAServer. For example, a user who has no
access to a particular file store should be excluded from the store by their portal role.

• If your DRE version is DRE 3, ensure that the ACL field is memory mapped in order to speed up
access to ACLs. You should also make sure that you have set the size of the ACL field to be
large enough for the maximum possible ACL size. You can do this by setting the following
parameters in the DRE configuration file:

[Server] section

MemFields

Set to true to allow the fields you specify in the [Fields] section of the configuration file
to be stored in memory for increased query speed.

[Fields] section

nn=MEM.size,name

Replace name with the name of a field that you want to hold in memory. Only the first
size bytes will be stored in RAM.



Setting up security

Page 54

Integrating Autonomy products

• If your front-end application is Portal-in-a-Box, and you are using multiple DREs with a DQH,
ensure that the database mappings between the components are identical so that the security
strings that are constructed by the Portal can map back to the DRE databases successfully. In
order to achieve this, it is advisable that you have identical database names for each content
store. This does not apply if you have set up security by database (rather than by document; see
the IAS manual for details).

• If you have multiple secure sources in your installation, it is likely that user details required for
security will differ between sources. For example, user names for NT are not be the same as for
Lotus Notes or Exchange, and so on. If your front-end application is Portal-in-a-Box, you should
select one user name as the base by which the Portal identifies the user (NT user name is
simplest because Portal-in-a-Box can create this user automatically). The user can then enter
other user names manually, when they are required; or you can set a list of user details for the
various sources with the following parameter in the UAServer configuration file:

SecurityRepositoryn=<security_repository>

If you use UAServer to store a user's security details for a repository,
SecurityRepositoryn allows you to edit the value that is stored as the repository
name. The string that you enter for this must be the name of the security section that
contains the security settings for this repository in the DRE configuration file. You can
use SecurityUserNamen, SecurityPasswordn, SecurityDomainn and
SecurityGroupn to edit the user's security details for the repository (which of these
details are required depends on the repository). 

If you want to edit multiple sets of security details, you must number them. The
numbering must start from 0 and be consecutive.

For example:

SecurityRepository0=NT&SecurityUserName0=JohnSmith&SecurityPassword
0=mypassword&SecurityGroup0=marketing,sales&SecurityRepository1=Exch
ange&SecurityUserName1=JohnS&SecurityDomain1=MyCompany

• If you are using Portal-in-a-Box with ActiveKnowledge, you must ensure that the following actions
are taken when you set up the installation:

If you are using ActiveKnowledge to communicate with a secure web server with NT
authentication, set UseNTLM=true in the ActiveServer configuration file.

The user must log into the Portal in order to set the security permissions in the user's
security details file.



Querying a DRE

Page 55

9. Querying a DRE

There are a number of types of query that you can send to the DRE, and for each of them you can
use field specifiers to restrict the results that are returned and displayed. Which options are available
and how you should implement them in your queries depend on what version of the DRE you are
using. Please refer to your DRE documentation for further details. 

Query types

Once you have configured the DRE, it operates automatically, handling a number of different query
types:

Natural language

Natural language text is submitted as a query.

Boolean and bracketed Boolean

Standard Boolean AND/OR/NOT searches.

Fuzzy queries

If a search string is not quite accurate (for example, if it contains spelling mistakes) a fuzzy
query returns results that contain words which are similar to the entered string. (Note that you
need to enable fuzzy queries before you can use them.)

Proximity search

Words that appear close together in the search string are given a higher weighting.

Soundex keyword search

If the spelling of a keyword is not quite accurate, but phonetically correct, a Soundex keyword
search returns results that contain the keyword and phonetically similar keywords (using a
configurable Soundex algorithm).

Proper names

Names are recognized and treated as a unit.



Querying a DRE

Page 56

Restricting queries with field specifiers

For all of the query types, you can restrict the result documents that the DRE returns by specifying
values that fields in the result documents must have. You can also send field queries to the DRE
independently in order to return all documents that match the field criteria you specify.

The field specifiers you can use include the following:

String match Field values must exactly match the string you specify (you can
also perform string matches that include a wildcard character).

Term match Field values must match the concepts in the string you specify.

Fuzzy match Field values are fuzzy matched to the string you specify.

Alphabetical range Field values must lie within the range you specify.

Date range Field values must lie within the range you specify.

Numerical range Field values must lie within the range you specify.

Comparative numerical Field values are greater than / less than / equal to / not equal to
the value you specify.

Comparative date Field values are before or after a time you specify.

The DRE performs the following steps for queries containing field specifiers:

• The DRE constructs a list of possible results for the input. 

• For each of the possible result documents, the DRE determines whether its fields match the
restrictions you have specified. If a document's field matches the value specified, the document
is added to the final results list.

The first stage is extremely fast, as the DRE executes a standard query. The second stage is
sequential and its duration depends on the number of possible results that the first stage identified. In
order to achieve optimum performance for queries with field restrictions, you must construct the query
to return a small set of possible results in the first stage. For example, the following two queries will
return the same results, but the second can be completed more quickly:

DRE 4:

Action=Query&Text=drama&FieldText=Shakespeare:*/Author 

Action=Query&Text=drama+AND+(Shakespeare:Author)&FieldText=Shakespeare:*/Author



Querying a DRE

Page 57

DRE 3:

qmethod=q&querytext=drama&fnameAuthor=Shakespeare

qmethod=q&querytext=drama+AND+(Shakespeare:Author)

In the first query, result documents that contain concepts that match drama are returned as possible
results. The DRE checks the */Author field of each of these in order to find fields that contain exactly
the value Shakespeare, and returns these as query results.

In the second query, result documents that contain drama and where the Author field contains
Shakespeare are returned as possible results. This will usually generate a shorter list of possible
results, so than the first query so the DRE can more quickly check through the */Author field of the
possible documents in order to find only documents where the */Author field contains exactly the
value Shakespeare.

Note: If you want to send a query with the field restriction (Shakespeare:Author), you must declare
the Author field as an Index field in your DRE configuration file. 

For full details of how to use field specifiers and field restrictions in order to optimize your queries,
please refer to your DRE documentation.



Querying a DRE

Page 58

Using field restrictions to display results

When it returns query results, the DRE by default returns the fields that you have set up as Reference
fields in the DRE's configuration file. 

If your DRE version is DRE 4, you can alter which fields are displayed for result documents, by
adding the following parameters to your action command:

Print Allows you to return all explicitly indexed fields, the content of the index fields
as a single text field or all XML fields.

PrintFields Allows you to specify fields that you want to display. 

Note: you can only specify fields that are declared as index fields in the DRE
configuration file.



Improving DRE performance

Page 59

10. Improving DRE performance

There are several factors that you can change in order to enable the DRE to make the best use of
your system resources:

• running indexing and query processes at different times

• number of CPUs per DRE

• number of threads that the DRE uses

• amount of RAM allocated to index and term caches

• quality of DRE content

• query type

• delayed synchronization during indexing

In addition, you can improve performance by using multiple DREs with the Distributed Index Handler
(DIH) and Distributed Action Handler (DAH). Please refer to the Planning, installing and
configuring Portal-in-a-Box 4 chapter for details of how to determine the best distributed
architecture for your needs.

Scheduling indexing and query processes

The main tasks the DRE performs are:

Indexing

Documents in IDX or XML file format are added to the DRE. You can schedule when
indexing is performed according to your needs. This depends on the kind of system you are
setting up: for some systems, new data must be added to the DRE as soon as it becomes
available; for other systems, weekly updates may be enough. 

Querying

Users send natural language, keyword or Boolean queries to the DRE, which analyzes the
concept of the query and returns documents that are conceptually similar. The user requires
a real-time response to the query, so query speed is particularly important.

Indexing and querying both use the DRE's resources heavily, so it is best to run them at different
times. For example, if you are setting up a DRE that users will send queries to during office hours,
you should schedule indexing tasks to run during the night. However, in some circumstances, this is
not possible, and the recommendations in this chapter include suggestions of how you can balance
indexing and querying tasks.



Improving DRE performance

Page 60

Calculating the number of CPUs needed per DRE

The DRE should have exclusive access to at least one CPU. Increasing the number of CPUs that a
DRE uses increases the speed of DRE operations. If you are setting the DRE up as part of a system
in which indexing is carried out at the same time as users are sending queries to the DRE, you should
make at least 2 CPUs available to the DRE, so that one CPU can always be dedicated to indexing.
This is because indexing is resource-intensive, and with just one CPU for both indexing and querying,
query speed may become unacceptably slow.  

Note that ideally, the number of CPUs that the DRE has access to should always be high enough to
enable you to set the number of threads available for query commands to at least 4. (Please refer to
the Calculating the number of threads that the DRE can use section for details of how to calculate
how many query threads to set.)

Calculating the number of threads that the DRE can use

The DRE is a multi-threaded process: it can execute multiple commands at the same time, which
enables it to maximize the utilization of the CPU and disk resources. For example, during the lifetime
of a query, time is spent on disk (reading information needed to resolve the query) and in the CPU
(processing values and relationships in order to determine which information to return). With multi-
threading, rather than completing all stages of one query before moving onto the next, the DRE can
complete parts of one query that use the CPU, whilst retrieving information from disk for another
query, or writing information to disk for an indexing command. This enables more efficient use of
resources, since there is less time when the CPU and disk are not being used. 

DRE threads

The DRE uses different threads for indexing, querying and various other processes (such as
executing service commands and gathering statistics). Of these threads, indexing and querying make
the heaviest use of system resources. Indexing is single threaded, but the DRE can use multiple
threads for querying, and you can configure the number of query threads that the DRE can use,
according to how your system is going to be used.

Calculating the optimum number of query threads for your DRE

The balance of CPU and disk usage for the DRE means that use of resources is maximized during
querying when a CPU deals with between 1 and 2 threads. For example, if your DRE has access to 4
CPUs, it should use between 4 and 8 query threads. If too few threads are used, resources will be
underused. If too many threads are used, the CPU resources needed for context-switching (when the
CPU changes its attention from one thread to another) mean that no benefit is gained from the high
number of threads.

An additional consideration when calculating the number of query threads the DRE can use is the
kind of query that is going to be sent to the DRE. If your users will be sending queries such as
keyword queries, which can be processed very quickly, you should set the number of threads with a
low value (because for fast queries, there is less time when the CPU and disk are idle). If your users



Improving DRE performance

Page 61

will be sending slower queries, such as queries with multiple field restrictions that take more than one
second to resolve, you should set the number of threads to a high value (because for slower queries,
there is more time when the CPU and disk are idle). Please refer to the Optimizing querying section
for details of which queries you can expect to be executed quickly or slowly.

Note: ideally, your DRE should have access to enough CPUs to allow you to set the number of
threads available for query commands to at least 4.

Balancing threads between indexing and querying tasks

Where possible, you should set up indexing tasks to be performed at a time when queries are not
being sent to the DRE, or when query volume is low. This means that the maximum resources can be
available for handling queries, where speed is most crucial.

If indexing and query commands are being sent at the same time, your calculation of how many
threads to set for querying should take this into account. You should allow one CPU to be used for
indexing only, and make your calculation of how many query threads the DRE can use accordingly.
For example, if your architecture has 4 CPUs for a single DRE, you should assume that one CPU will
be used for indexing, and calculate the number of query threads to use as if there were just 3 CPUs.
That is, query threads should be set between 3 and 6.

To set the number of threads that the DRE uses for queries:

Parameters in the [Server] section of the DRE configuration file allow you to specify maximum
number of query threads that the DRE uses. The way you set these parameters depends on whether
you are sending action commands (for example, action=Query&Text=accounts) or qmethod
commands (for example, qmethod=q&querytext=accounts) to the DRE.

If you are sending action commands to the DRE, the following parameter allows you to specify the
maximum number of query threads to use:

MaximumThreads

The number of ACI action commands that the DRE can process in parallel at any one time.
The default value for this setting is 10. 

Note: if you are sending action commands to the DRE, the QueryThreads parameter is still
set, but you can exclude the threads that it specifies from your calculation of the number of
query threads that your DRE is using, since the threads that QueryThreads specifies will
never be used.

If you are sending qmethod commands to the DRE, the following parameter allows you to specify the
maximum number of query threads to use:

QueryThreads

The number of qmethod queries that can be processed in parallel at any one time. The default
value for this setting is 4.

Note: if you are sending qmethod commands to the DRE, the MaximumThreads parameter is
still set, but you can exclude the threads that it specifies from your calculation of the number of
query threads that your DRE is using, since the threads that MaximumThreads specifies will
never be used.



Improving DRE performance

Page 62

File descriptor limitations on Solaris

The Solaris operating system allows a maximum of 256 file descriptors per process. This is lower
than other operating systems (generally around 1024), and puts limits on DRE size and number of
threads.

File descriptor usage for DRE version 4 is as follows:

• 25 static file descriptors (for socket handling, log files and other administrative
processes)

• at least 6 file descriptors for each thread (for dynterm and nodetable files)

For a small DRE, there are just 2 dynterm files and 4 nodetable files, but as the DRE increases in
size the number of dynterm and nodetable files increases. (When the size of the dynterm or
nodetable file reaches the internally set size limit for these files, the DRE starts a new file. This size
limit is generally 2 gigabytes for Solaris, and 1 gigabyte for other operating systems.) For each
additional dynterm or nodetable, each thread needs to use an additional file descriptor.

This means that there is a limit on the DRE size and number of threads that can be used - as each
extra thread uses multiple extra file descriptors. On most operating systems, this limit is rarely
reached (the number of file descriptors needed rarely exceeds about 500, which is within the 1024
maximum for most operating systems). On Solaris, the 2 gigabyte limit on dynterm and nodetable file
size means that the DRE needs fewer file descriptors per thread than on other operating systems
(which have a 1 gigabyte limit), but the low limit on file descriptors should still be considered when
you are calculating the size of DREs and number of threads to use.

For example, a DRE that uses up to 8 threads, can have a maximum size of 30 gigabytes (around 7
million documents).

Calculating cache sizes

Indexing and querying make use of cached data to speed up the processes. DRE configuration
parameters allow you to set the maximum size that these caches can reach. When you calculate this
size, you should ensure there is sufficient RAM available to the DRE for the caches. If there is not
enough RAM available, the data storage may be switched from RAM to disk, which causes a
significant performance reduction.

The balance between the size of the caches for indexing and querying depends on how the DRE is
being used. Both caches should usually be set to be as large as possible, but the total size of the
caches should never exceed 65% of the total available RAM. 



Improving DRE performance

Page 63

Index cache

For indexing, the index cache is used to hold a representation of the data that is going to be indexed
into the DRE. It is particularly important for DRE performance that this cache is large enough to hold
the data that you are indexing. The amount of data that the index cache needs to hold depends on
how much data you are indexing into the DRE at a time.

In order to calculate the amount of data that your index cache needs to hold, you need to consider
how you have set the DelayedSync parameter (please refer to the Optimizing indexing section for
details of how to use DelayedSync):

• If you are setting DelayedSync to false, the index cache only needs to be large enough
to hold one file, because each file is synchronized with the DRE (and the cache is
flushed) as soon as the data for a file has been added to the index cache. In this case,
you should set the size of the index cache to be slightly larger than the largest file you
expect to index into the DRE.

• If you are setting DelayedSync to true, the index cache needs to be large enough to
hold all the files that will be added to it before the timeout period you specify with the
MaxSyncDelay parameter, because the files are only synchronized with the DRE (and
the cache flushed) after the timeout period has been reached. Note that files in the index
cache will also be synchronized with the DRE if it gets full before the timeout period
(which will affect your calculations of the way system resources are used).

The following parameter in the [IndexCache] section of the DRE configuration file allows you to
specify how much memory the DRE can use to cache data for indexing:

IndexCache

The size of the index cache in kilobytes. The default value for this setting is 102400.

Term cache

For querying, the term cache stores recently used query terms. A larger term cache can increase the
speed of query resolution.

The following parameter in the [TermCache] section of the DRE configuration file allows you to
specify how much memory the DRE uses to cache query terms:

TermCache

The size of the term cache in kilobytes. The default value for this setting is 102400.



Improving DRE performance

Page 64

DRE content

The way you configure the DRE content can affect DRE performance, particularly during querying.
The following can enable the DRE to run more efficiently:

• avoid duplication

• select index fields carefully

• return only the query fields that you need to display

Avoiding duplication

Duplicate data in the DRE can slow down query performance. The DRE is optimized internally for
situations in which the content is statistically representative of the corpora from which queries will be
performed. If data is duplicated, the distribution of terms is misleading (terms that are statistically rare
can end up being indexed an unrepresentatively large number of times). This means that the
occurrence of query terms can appear more frequent than it actually is, which slows down querying.

In addition, extra occurrences of query terms can cause the term cache to fill up quickly, which results
in decreased performance since fewer useful query terms can be cached.

Please refer to the Removing duplicates during indexing section of the Configuring data storage
chapter for details of how to remove duplicates during indexing.

Selecting fields to index

You can configure the Connector you are using to retrieve data from your repositories to extract
metadata, which you can store in fields alongside documents that you index into the DRE. It is can be
tempting to store all metadata for a document just in case it is needed. This is inefficient: it increases
document sizes, which slows down importing and indexing, and increases the size of the DRE, which
slows down querying. Instead, you should consider the kinds of query that users will send to the DRE,
and the metadata that you need to display, and index only the metadata that is needed. 

It is also important for query performance that you index metadata into the most useful kind of field.
The following can be useful in making querying efficient:

• index fields

• numerical date fields

Please refer to the Indexing metadata section of the Improving document content chapter for
more details.

Selecting fields to display

You should also ensure that queries only return the metadata that you need, rather than returning all
fields and leaving it up to the front-end application to select which metadata is displayed. See the
Using field restrictions to display results section of the Querying a DRE chapter for details of how
to specify the fields that the DRE returns for query results.



Improving DRE performance

Page 65

Optimizing querying

The query process

The query process works in 3 stages:

1. Pre-filter 

At this stage, database restrictions, date-field restrictions, and numerical field restrictions
that you specify in the query string and configuration file are processed. This reduces the
amount of DRE content that the query runs against, which speeds up the query process.

2. Conceptual matching

The DRE finds conceptual matches for the query within its content.

3. Post-filter

At this stage, the DRE checks the results that it found during conceptual matching to
ensure that they match any field text restrictions that you included in the query string.
This is relatively time-consuming, and multiple field restrictions at this stage can slow
down the query process.

The recommendations that this chapter makes for allocating query threads and scheduling indexing
tasks for times when users are not sending queries to the DRE can improve the speed of the query
process. In addition, when you are optimizing query speed, you should consider the kinds of query
that you are sending to the DRE.

Query types

Standard queries, such as keyword and conceptual searches are significantly faster than queries that
use field restrictions, especially when field restrictions apply to text fields that have not been set up as
Index fields. If you are querying with field restrictions, you can reduce this effect by ensuring that the
fields that you are querying on are correctly indexed (please refer to the DRE content section of this
chapter for further details, and to the Querying a DRE chapter for an outline of query types).



Improving DRE performance

Page 66

Optimizing indexing

The speed of the indexing process is usually less critical than the speed of the query process, but
with large amounts of data being indexed into the DRE, it is still important to improve the efficiency of
the process where possible. In addition, the way you configure the indexing process can have effects
on the efficiency of the query process.

The indexing process

The indexing process works in 2 stages:

1. The DRE creates a representation of the new data in the index cache.

2. The cache is synchronized with data that the DRE currently contains, and the new data
is stored on disk and removed from the index cache.

When you are scheduling indexing, you should consider this chapter's recommendations on DRE
content (particularly on selecting fields to be indexed), and on running indexing and querying
processes at different times. In addition, the delayed synchronization feature allows you to change
the stage at which the index cache is synchronized with the DRE, depending on whether your priority
is achieving fast query speeds or making new information available to the user as quickly as possible.

Delayed synchronization

The delayed synchronization feature allows you to select how the index cache is synchronized with
the DRE data. This is useful in systems where indexing tasks are scheduled at times when the DRE
is also handling queries. 

By default, synchronization happens as soon as a representation of data has been made in the index
cache. New data is available to the user (as query results) quickly, so you should use this setting in
systems where up-to-date data is the priority. But synchronization uses resources that the DRE could
otherwise be using for querying. Delayed synchronization reduces the impact of this effect by
collecting multiple data representations in the index cache and then synchronizing them all with the
DRE data in one go. This is useful in systems where query speed is more important than having up-
to-date data. 

Note: delayed synchronization is recommended if you are indexing a lot of small files (files that are
smaller than 100MB).

The following parameter in the [Server] section of the DRE configuration file allows you to specify
whether the indexing process uses delayed synchronization:

DelayedSync

Enter true if you want the DRE to delay synchronization. If you set DelayedSync to true, the
DRE only stores data on disk when:

• the index cache is full

• the index cache contains some data and the timeout specified by
MaxSyncDelay has expired



Clustering with Classification Server

Page 67

11. Clustering with Classification Server

Classification Server allows you to take a snapshot of the data in a DRE. This snapshot identifies
clusters of conceptually similar documents, which enables you to generate a view of trends in the
data. You don't need to generate an initial taxonomy in order to take a snapshot. 

A set of data can contain a few large clusters or many small clusters, as well as a number of outliers
that aren't part of any cluster. Clusters may consist of highly similar documents or of less closely
related ones. What constitutes optimal clustering depends to some extent on how you intend to use
your clusters, but the aim of clustering is always to generate an accurate characterization of the data
in your DRE. 

By default Classification Server uses internal settings to produce clusters. These default settings do
not usually need to be changed, but in some cases you may require more or less detail in your
clusters, or the amount and nature of your data may mean that default clustering is not satisfactory.
You can optimize clustering in these cases by setting parameters that adjust the size of the units on
which clusters are based, the degree of conceptual similarity that documents within clusters must
have, or the number of clusters that are created.

The clustering process

There are two main stages to the clustering process:

• building "seeds"

• grouping seeds into clusters

Seed-building is implemented when the ClusterSnapshot action is executed. Classification Server
takes a sample of the documents in the Data DRE and tries to associate each of these documents
with other documents in the DRE - based on the similarity of the concepts that the documents
contain. Each of the groups of sample document and similar documents produced at this stage is a
seed. Classification Server stops trying to build a seed when the seed meets the requirements that
SeedSize specifies or when there are no more documents in the DRE that meet the similarity
requirement that SeedBindLevel specifies (whichever condition is reached first). Classification
Server discards any seeds that don't reach the required size. The number of clusters you specify with
NumClusters affects the number of sample documents from which Classification Server tries to
create seeds at this stage (note that you can adjust the relationship between the number you specify
here and the size of the sample used by changing the value of StartingSuggestOverrideFactor).

Grouping seeds into clusters is implemented when the ClusterSGDataGen or ClusterCluster
actions are executed. Classification Server tries to create clusters by grouping seeds together. The
grouping is based on the similarity of the concepts that the seeds or clusters contain. Clustering is
complete when the number of clusters specified by NumClusters has been created, or when no
more clusters can be created that meet the similarity requirement specified by BindLevel (whichever
condition is reached first).  Clusters that don't meet the quality requirement set by BindLevel or the
size requirement set by MinClusterDocs are discarded.



Clustering with Classification Server

Page 68

Optimizing clustering

You can edit the following settings in the [Cluster] section of the Classification Server configuration
file in order to optimize clustering (most of the settings can also be included in action commands as
indicated in the description of the setting):

SeedSize

Specify the size of the seed around which clusters are formed in a Snapshot. A seed is the
unit that a cluster is based on, and is built from documents in the Data DRE that contain
similar concepts. SeedSize represents the size of the document group that is required in order
for the documents' concepts to form the basis of a cluster (note that SeedSize does not
specify an absolute value for the number of documents in a seed). You can use
SeedBindLevel to specify the conceptual similarity that the documents must have to each
other in order to form a seed. -1 uses an internal default for the seed size.

You can set this parameter in the configuration file, or include it in a ClusterSnapshot action
command.

SeedBindLevel

Specify how tightly bound to each other the concepts between the documents that form a seed
must be (a seed is the unit around which a cluster is built). -1 uses an internal default for the
bind level (a higher value here gives more tightly bound seeds).

You can set this parameter in the configuration file, or include it in a ClusterSnapshot action
command.

BindLevel

Specify how tightly bound the concepts within clusters are. -1 uses an internal default for the
bind level (a higher value here gives more tightly bound clusters).

This parameter applies when seeds are grouped into clusters; it specifies the similarity
between seeds in order for them to be grouped into a cluster.

You can set this parameter in the configuration file, or include it in a ClusterCluster or
ClusterSGDataGen action command.

StartingSuggestOverrideFactor

Enter a value in the range 1 to 10, in order to specify how large a part of the DRE should be
clustered (a higher value allows a larger part of the DRE to be clustered). The default value for
this setting is 1. 



Clustering with Classification Server

Page 69

Note: it is strongly recommended that you don't set StartingSuggestOverrideFactor to a
value greater than 3, unless you are advised to do so by Autonomy.

NumClusters

The maximum number of clusters that you want to be generated. The default value for this
setting is 25. 

This parameter determines how detailed your view of the data in the DRE is. Higher values for
NumClusters give a more detailed, low-level view; lower values give a less detailed, high-
level view.

You can set this parameter in the configuration file, or include it in a ClusterCluster or
ClusterSGDataGen action command.

MinClusterDocs

The minimum number of documents that a cluster is allowed to have. Clusters that don't meet
this requirement are discarded. The default value for this setting is 10.



Clustering with Classification Server

Page 70

Configuration recommendations

The ideal values for the parameters that affect clustering depend on the nature and amount of data in
your DRE. It is possible to make some general recommendations about how to change these
parameters according to your data. Parameters are closely interdependent, so you should make
these changes in combination with each other (rather than just changing one of the settings), and
change values in small increments or decrements.

Note: although you can make many changes to clustering, the number and size of clusters that
Classification Server can identify depends ultimately on the data that your Data DRE contains. 

Small amount of data

If your DRE has a small amount of data, Classification Server is likely to identify fewer clusters, since
it is less likely that your data will contain a lot of similar documents for a number of different topics.
You can edit the following parameters in order to change clustering in this situation.

Note:  ideally, your Data DRE should contain at least 500 documents.

SeedSize Decrease SeedSize (by 3-4 points at a time). This
reduces the size that seeds are required to reach,
which means that more seeds are likely to be
successfully created. 

MinClusterDocs Decrease MinClusterDocs. This means that clusters
that contain fewer documents are not discarded.

StartingSuggestOverrideFactor Increase StartingSuggestOverrideFactor (by 1 or 2
points only). This increases the number of sample
documents from which Classification Server creates
seeds, which in some cases increases the possibility of
finding clusters in the data.

SeedBindLevel Decrease SeedBindLevel (by 1 point at a time). This
reduces the similarity threshold for clusters. You should
not change this until you have tried changing
SeedSize, since lowering SeedBindLevel is more
likely to allow into clusters documents that are less
relevant.



Clustering with Classification Server

Page 71

Large amount of data

If your DRE has a large amount of data, you will probably not need to edit any clustering settings -
since this is the situation in which clustering is most successful. In some cases (for example, if your
DRE contains more than 1 million documents), it may be beneficial to alter the following setting:

StartingSuggestOverrideFactor Increase the value of StartingSuggestOverrideFactor.
This increases the number of sample documents from
which Classification Server creates seeds. This is
sometimes necessary in order to allow a broader
section of the DRE's content to be represented by the
clusters that are created.

Very similar data

If the documents in your DRE contain highly similar concepts, then this may be reflected by
Classification Server identifying a small number of large clusters. For example, if your DRE contains
mostly documents about sport, then you may get one large "sports" cluster. This situation is a realistic
characterization of the data in your DRE, but in many circumstances is not useful. You can edit the
following settings in order to generate smaller, more specific clusters (for example, breaking "sports"
into "football", "tennis", "golf"…):

SeedBindLevel Increase SeedBindLevel. This requires greater
similarity between the documents that form a seed,
which can have the effect of reducing the breadth of
topics covered by the concepts in the documents that a
seed contains. 

Note: increase SeedBindLevel 1 point at a time;
increasing by too much can result in seeds getting
discarded because they don't contain enough
documents.

BindLevel Increase BindLevel. This requires greater similarity
between the concepts in seeds or clusters that are
merged to create a cluster, which can have the effect of
decreasing the size of clusters, as well as increasing
the number of clusters identified, because merging
seeds and clusters together is stopped at an earlier
stage. 



Clustering with Classification Server

Page 72

Very different data

If the documents in your DRE contain a wide variety of concepts, there may not be enough similar
documents for Classification Server to create seeds or clusters that characterize the data in the DRE.
You can lower the similarity requirement with the following settings:

SeedBindLevel Decrease SeedBindLevel. This reduces the similarity
requirement between the documents that form a seed,
which can have the effect of increasing the breadth of
topics covered by the concepts in the documents that a
seed contains.

Note: decrease SeedBindLevel 1 point at a time;
decreasing by too much can result in seeds and
clusters containing documents that are less relevant,
because the similarity requirement is too low.

BindLevel Decrease BindLevel. This reduces the similarity
requirement between the concepts in seeds or clusters
that are merged to create a cluster, which can have the
effect of increasing the size of clusters, as well as
increasing the number of clusters identified (since
fewer get discarded for not meeting the quality
requirement).

Configuring clustering to change the data view

It might be the case that although Classification Server identifies clusters that characterize your data
successfully, you want to change the view of the data that clustering creates. The following settings
enable you to change the data view that clusters generate:

NumClusters Increase NumClusters to get a more low-level view of
your data by identifying more clusters.

Decrease NumClusters to get a more high-level view
by identifying fewer clusters. 

MinClusterDocs Decrease MinClusterDocs to reduce the number of
clusters that are discarded. This allows smaller clusters
to be identified. 

Increase MinClusterDocs to increase the number of
clusters that are discarded. Only larger clusters are
kept.



Clustering with Classification Server

Page 73

BindLevel Decrease BindLevel to reduce the similarity
requirement between the concepts in seeds or clusters
that are merged to create a cluster. This can have the
effect of increasing the size of clusters, as well as
increasing the number of clusters identified (since
fewer get discarded for not meeting the quality
requirement).

Increase BindLevel to increase the similarity
requirement between the concepts in seeds or clusters
that are merged to create a cluster. This can have the
effect of decreasing the size of clusters, as well as
increasing the number of clusters identified, since
merging seeds and clusters together is stopped at an
earlier stage.



Clustering with Classification Server

Page 74



Legacy compatibility

Page 75

12. Legacy compatibility

Importing categories from legacy topic sets

Classification Server allows you to build categories from topic sets from a legacy keyword engine.
The CategoryImportTopic action creates one category per topic set. You can specify whether you
want to maintain the original Boolean rules of the topic or import the topic as an Autonomy concept
matching agent.

If you want to adjust the weightings of the terms for your category, you can use the CategorySetTNW
action to edit the weights for existing terms or to add new terms and assign weights to them. (The
CategoryGetTNW action allows you to view the current category terms and their weights.)

Indexing manually tagged documents into the DRE

Indexing XML-tagged documents

You can index XML-tagged documents directly into a DRE 4 / AXE using DREADD.

Enter the name (or full path) of your XML file in the following format:

http://<host>:<port>/DREADD?<file_name>

This indexes the fields in the XML file that you specify into the DRE.

Optional parameters for DREADD allow you to explicitly set the following details when you are
indexing XML:

• document format (XML or IDX), if format is ambiguous

• fields that contain the document's date

• fields that contain the name of database to index into

• fields that contain the document's expiry date

• fields that contain delimiters for start and end of document

• fields to discard before indexing

• fields to flatten hierarchy of a structured document

• fields that contain the document's security type

• fields that contain the document's language

• fields that that mark the start of a new section of the document



Legacy compatibility

Page 76

Manually tagged documents

You can index non-XML format tagged documents into a DRE using the Autonomy Connectors and
the Import module, which import documents to IDX format ready to be indexed into the DRE. When
you index IDX documents into the DRE, meta data is automatically extracted from the documents'
content. See the documentation for your Connector for details of how to set it up for your document
format. 

Legacy search

Boolean, keyword, wildcard and proximity searches are supported for queries to the DRE, as well as
a number of advanced searches. See the Querying the DRE chapter for a list of the types of search
that are supported, and refer to your DRE documentation for details of how to implement your search.



Glossary

Page 77

Glossary

ACI (Autonomy Content Infrastructure)
The Autonomy Content Infrastructure is a technology layer that automates operations on unstructured
information for cross enterprise applications, thus enabling an automated and compatible business-
to-business, peer-to-peer infrastructure. 

The ACI allows enterprise applications to understand and process content that exists in unstructured
formats, such as e-mail, Web pages, office documents, and Lotus Notes. 

AXE (Autonomy XML Engine)
The Autonomy XML Engine (AXE) enables you to enhance the DRE's functionality by allowing you to
input, output and process XML. It provides an infrastructure for complete automatic interoperability
between applications using different tagging schemes, based on a conceptual understanding of XML
documents, rather than on the tags themselves, and combines this with all other Autonomy functions.

Connector
A Connector is an Autonomy fetching solution (for example HTTPFetch, Oracle Fetch, AutoIndexer
and so on) that allows you to retrieve information from any type of local or remote repository (for
example, a database or a web site). It imports the fetched documents into IDX or XML file format and
indexes them into a DRE from where you can retrieve them (for example by sending queries to the
DRE).

Database
An Autonomy database is a DRE data pool that stores indexed information. The administrator can set
up one or more databases, and specifies how data is fed to the databases.

DRE (Dynamic Reasoning Engine)
The Dynamic Reasoning Engine is a scalable, multithreaded process which is based on advanced
pattern-matching technology that exploits high-performance probabilistic modeling techniques. The
DRE contains databases into which you can index information using a Connector (for example,
HTTPFetch, AutoIndexer, ODBC Fetch and so on), the DRE Administration tool or an indexing
command. You can then access this information through a front end or by sending query commands
to the DRE.



Glossary

Page 78

IAS (Intellectual Asset Protection System)
The Intellectual Asset Protection System provides an integrated security solution to protect your data.
At the front end, authentication checks that users are allowed to access the system on which result
data is displayed. At the back end, entitlement checking and authentication combine to ensure that
query results only comprise documents that the user is allowed to see, from repositories that the user
is allowed to access.

IDX
Apart from XML files only files that are in IDX format can be indexed into a DRE. You can use a
Connector to import files into this format or manually create IDX files (please refer to the DRE 4 / AXE
manual for details).

Importing
After a document has been downloaded from the location it is stored in, it is imported to an IDX file
format. This process is called "importing".

Indexing
After documents have been imported to IDX file format, their content (or links to the original
documents) is stored in a DRE. This process is called "indexing".

Permission
Depending on the roles that have been allocated to a user, he has permission to access specific
portlets (this may include the ability to edit them).

Query
You can submit a natural language query to the DRE which analyzes the concept of the query and
returns documents that are conceptually similar to the query. You can also submit Boolean, bracketed
Boolean and keyword searches to the DRE.

Role
Each user is allocated one or more roles by the administrator, which assign him to a certain group of
users. The roles that a user has determine which privileges he has (that is which portlets he has
access to). 



Index

Page 79

Index

A
ACI, 77
ACI Servers, 2
Administrator, 77
AXE, 77

B
BindLevel (Classification Server setting), 68

C
Caching

DRE index cache, 63
DRE term cache, 63

CharConv (DRE 3 setting), 43
Classification Server

Optimizing clustering, 68
Clustering

BindLevel (Classification Server setting), 68
Configuration recommendations, 70
MinClusterDocs (Classification Server

setting), 69
NumClusters (Classification Server setting),

69
Optimizing, 68
overview, 67
SeedBindLevel (Classification Server

setting), 68
SeedSize (Classification Server setting), 68
StartingSuggestOverrideFactor

(Classification Server setting), 68
Configuration files, 25

Applying modifications, 25
Entering Boolean values, 25
Entering string values, 25

Connector, 77
Connectors, 2
Content, 39

Breaking, 39
DRE, 41
Extended concepts, 42
Import module, 39
ImportBreaking (Import setting), 39

ImportBreakingMaxParagraphWords
(Import setting), 39

ImportBreakingMinDocWords (Import
setting), 40

ImportBreakingMinParagraphWords (Import
setting), 40

Languages, 43
MaxFieldLength (DRE 4 setting), 41
MaxSectionLength (DRE 4 setting), 41
Optimizing, 42
Proper names, 42
ProperNames (DRE 3 setting), 42
ProperNames (DRE 4 setting), 43
Using stop lists, 43

CPUs
Number per DRE, 60

D
Data storage

Expiry time, 51
Removing duplicates, 47
Removing duplicates (DRE 3), 49
Removing duplicates (DRE 4 / AXE), 47

Database, 77
Delayed synchronization, 66
DelayedSync (DRE setting), 66
Displaying query results

With field restrictions, 58
DRE, 77, 78

Caching, 62
Checking the indexing process, 45
Delayed syncronization, 66
Improving performance, 59
Index fields, 64
Numerical date fields, 64
Optimizing indexing, 66
Optimizing querying, 65
Querying, 55

DRETITLE (DRE field), 27

F
Field restrictions, 58
Field specifiers, 56
FieldNum (DRE 3 setting), 34
File descriptors



Index

Page 80

Limitations on Solaris, 62

I
IAS, 78
IAS (Intellectual Asset Protection System), 2
IDX, 77, 78
IDX files

Creating, 45
Viewing, 45

Import settings
ImportRemapFieldTon, 29

ImportBreaking (Import setting), 39
ImportBreakingMaxParagraphWords (Import

setting), 39
ImportBreakingMinDocWords (Import setting),

40
ImportBreakingMinParagraphWords (Import

setting), 40
Importing, 78
ImportIntelligentTitleSummary (Import

setting), 27, 32
ImportMinTitleChars (Import setting), 27
ImportRemapFieldn (import setting), 29
ImportSectionTitles (Import setting), 28
ImportSummary (import setting), 32
ImportSummarySize (import setting), 32
ImportTitleSkipWords (Import setting), 28
Index fields, 64

Setting up in the DRE, 44
IndexCache (DRE setting), 63
Indexing, 78

Checking the indexing process, 45
Delayed syncronization, 66
Index process, 66
Metadata, 44
Numeric date values, 44
Numeric values, 44
Optimizing, 66
Querying, 59
Scheduling index tasks, 59
Setting up index fields, 44

Introduction, 1

K
KillDuplicates (DRE 3 parameter), 49
KillDuplicates (DRE 4 parameter), 48

L
Languages

CharConv (DRE 3 setting), 43
Setting stemming algorithm, 43
StripLanguage (DRE 3 setting), 43

Legacy compatibility, 75
Manually tagged documents, 75
Search types, 76
Topic sets, 75

Log files
Connectors, 45
DRE, 46
import.log, 45

M
MaxFieldLength (DRE 4 setting), 41
MaximumThreads (DRE4 setting), 61
MaxSectionLength (DRE 4 setting), 41
MaxWords (DRE 3 setting), 33
MaxWordsPerSentence (DRE 4 setting), 36
Metadata

Indexing into the DRE, 44
Indexing numeric date values, 44
Indexing numeric values, 44

Method (DRE 3 setting), 33
MinClusterDocs (Classification Server

setting), 69
MinWords (DRE 3 setting), 33
MinWordsPerSentence (DRE 4 setting), 36
Modifying configuration parameter values, 25

N
NotesTitleField (Notes Fetch setting), 30
NumClusters (Classification Server setting),

69
Numeric date fields

Setting up in the DRE, 44
Numeric fields

Setting up in the DRE, 44
Numerical date fields, 64

P
Permissions, 78
Planning, installing and configuring Portal-in-

a-Box 4, 3



Index

Page 81

Portal-in-a-Box 4, 2
Planning, installing and configuring, 3
Setup in a distributed environment, 6
Typical set up, 4

ProperNames (DRE 3 setting), 42
ProperNames (DRE 4 setting), 43
Proximity search, 55

Q
Query, 77, 78

Proximity search, 55
Querying, 55

Displaying results, 58
Optimizing, 65
Query process, 65
Query types, 55, 65
Restricting queries with field specifiers, 56

QueryThreads (DRE setting), 61

R
Roles, 78

S
Security, 2, 53

Integrating Autonomy products, 54
Performance considerations, 53

SeedBindLevel (Classification Server setting),
68

SeedSize (Classification Server setting), 68
Sending queries, 55
Sentences (DRE 3 setting), 33
Sentences (DRE 4 action parameter), 36
Sentences (DRE 4 setting), 36
SOAP, 2
Solaris

DRE size limitations, 62
StartingSuggestOverrideFactor (Classification

Server setting), 68
Stop lists

Using to optimize content, 43
StripLanguage (DRE 3 setting), 43
Summaries, 31

FieldNum (DRE 3 setting), 34
Generating during indexing/importing (DRE

3), 33
Generating during indexing/importing (DRE

4 / AXE), 32

Generating during indexing/importing
(Import module), 32

Generating during querying (DRE 3), 37
Generating during querying (DRE 4), 35
ImportSummary (import setting), 32
ImportSummarySize (import setting), 32
MaxWords (DRE 3 setting), 33
MaxWordsPerSentence (DRE 4 setting), 36
Method (DRE 3 setting), 33
MinWords (DRE 3 setting), 33
MinWordsPerSentence (DRE 4 setting), 36
Sentences (DRE 3 setting), 33
Sentences (DRE 4 action parameter), 36
Sentences (DRE 4 setting), 36
Summary (DRE 4 action parameter), 35
SummaryOverride (DRE 3 setting), 33

Summary (DRE 4 action parameter), 35
Summary (DRE field), 31
SummaryOverride (DRE 3 setting), 33

T
TermCache (DRE setting), 63
Threads

Calculating maximum query threads, 60
DRE thread usage, 60
Limitations on Solaris, 62
Setting number of query threads, 61

Titles, 27
Extracting from DRE field, 29
Generating from document content, 27
HTML documents, 29
ImportIntelligentTitleSummary (import

setting), 27, 32
ImportMinTitleChars (import settin), 27
ImportRemapFieldn (import setting), 29
ImportRemapFieldTon (import setting), 29
ImportSectionTitles (import setting), 28
ImportTitleSkipWords (import setting), 28
Lotus Notes documents, 30
Manipulating with field operations, 27, 28
NotesTitleField (Notes Fetch setting), 30
PDF documents, 29

X
XML

Indexing XML into a DRE, 75


	Autonomy
	Welcome
	Introduction
	Planning, installing and configuring Portal-in-a-Box 4
	Typical Portal-in-a-Box set up
	Portal-in-a-Box setup in a distributed environment
	Planning
	Installation
	Configuration

	Modifying configuration files
	Modifying configuration parameter values

	Extracting document titles
	Generating titles from a document's content
	Manipulating title fields before extracting a title
	Specifying a field to extract a title from

	Generating document summaries
	Generating summaries during importing / indexing
	Generating summaries during querying

	Improving document content
	Content breaking
	Good content

	Configuring data storage
	Checking your data is indexed into the DRE
	Removing duplicates during indexing
	Setting expiry time

	Setting up security
	Performance
	Integrating Autonomy products

	Querying a DRE
	Query types
	Restricting queries with field specifiers
	Using field restrictions to display results

	Improving DRE performance
	Scheduling indexing and query processes
	Calculating the number of CPUs needed per DRE
	Calculating the number of threads that the DRE can use
	File descriptor limitations on Solaris
	Calculating cache sizes
	DRE content
	Optimizing querying
	Optimizing indexing

	Clustering with Classification Server
	The clustering process
	Optimizing clustering
	Configuration recommendations

	Legacy compatibility
	Importing categories from legacy topic sets
	Indexing manually tagged documents into the DRE
	Legacy search

	Glossary
	Index

