ZENworks. 2017

Endpoint Security
Scripting Reference

December 2016

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.novell.com/company/legall.

Copyright © 2016 Micro Focus Software, Inc. All Rights Reserved.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

https://www.novell.com/company/legal/

Contents

About This Guide 5
Script Development 7
Supported SCripting LANQUAGES« . o ottt e e e e e e e 7
EXeCULION CONteXL.o e 7
Defining EVENt THQQEIS. oot e e e e 8
NaMESPACES . . . o ot 8
Storage INterface 9
Variables. . ..o 9
Temporary Storage Methods e 9
Persistent Storage Methods. 10
JScript EXample 11
VBSCrpt EXample 12
Script Management INterface 12
Script Information and Helper Methods 13
Version Methodso 14
Trigger Event Methods.o 15
Script RUN Methods e 17
Program Launch/Execute Methods 18
Display Methods.o 21
Prompt Methods. 23
S AT S. . o ottt 26
Object MatCh LiStSo 27
Effective Policy Interface. 28
Policylnformation OBJECEo 28
Effective Policies Methods 28
Location Interface 29
DefiNItiONS . . . e 29
DA TY PSS . . . vt e 30
Security Location Methods. e 31
Mobile (Unknown) Location Methods. i e e 34
Assigned Location Methods. e e 34
Network Location Methods. 35
JScript EXample 36
VBSCript EXample e 36
Communication Hardware Policy Interface. 36
DA TYPES . . . e e e 37
Enforced Policy Methods 37
Hardware Enforcement Methods 37
Adapter Connection Methods. 38
JSCript EXAmMPIE . . o 39
VBSCHipt EXample e 40
WIFi Policy Interface e 40
DA TYPES . . . et e 41
Adhoc WiFi Networks Methods e e 41
BIOCK WIFi CONNECHIONSttt e e e e e 42
Minimum Security Level Methods 43
Minimum Signal Strength Methods 44
Storage Device Control Policy Interface e 45
DA TY PO . . e e 45
AutoPlay Methods 45
Contents 3

4

2

Contents

VolumeEs MethOUs.o e 46

Script Testing 49
Enabling Script Testing in the Endpoint Security Agent e 49
Testing an Unpublished SCript e 49
Testing a Published Scripting POliCY e 51
Tracing a Script’'s EXECULIONo e e 52

About This Guide

This ZENworks Endpoint Security Scripting Reference provides information to help you create and
test scripts to be used in Scripting policies.

Audience

This guide is written for the ZENworks Endpoint Security Management administrators.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Additional Documentation

ZENworks Endpoint Security Management is supported by other documentation (in both PDF and
HTML formats) that you can use to learn about and implement the product. For additional
documentation, see the ZENworks documentation website.

About This Guide 5

https://www.novell.com/documentation/zenworks2017/

6

About This Guide

Script Development

The following sections provide information to help you develop the script content for use in Scripting
policies (see “Scripting Policy” in the ZENworks Endpoint Security Policies Reference). For
information about testing a script, see Script Testing.

Supported Scripting Languages

The Endpoint Security Agent uses the Microsoft Windows Script Host (WSH) to run scripts on a
device. All scripts are subject to WSH restrictions. Script content can be authored in either JScript or
VBScript language; using multiple languages (JScript and VBScript together) in the same script is not
supported.

Standard WSH coding methods are supported, with the following exceptions:

1. WScript.Echo is not supported because return values can’t be sent back to a parent window that
is unavailable. Use the Action.DisplayMessage methods instead (see Display Methods).

2. Access Shell Objects. Use the following modified nomenclature/call:

[JScript]
Use:
var WshShel |
I nstead of:
var WshShel |

new Acti veXCbj ect ("W5cri pt. Shell");

WEcript. Createoj ect ("Wscript. Shell");

[VBScri pt]
Use:
D m WshShel |
Set WshShel |
I nstead of:
Di m WshShel |
Set WshShel |

Creat eQbj ect ("Wbcri pt. Shel | ")

WEcri pt. Creat eObj ect ("WBcri pt. Shel ")

Execution Context

Scripts execute in either the System context or the User context. The execution context is defined in
the Scripting policy through the Run As setting.

The script context, along with the operating system, determines the rights provided to the script and
the functions it can perform. For example:

+ On Windows Vista and newer Windows operating systems, a script running in the System
context (Session 0) cannot display messages on its own. To display messages, the script must
use the Action.DisplayMessage methods or another mechanism. However, on Windows XP,
scripts might be able to perform direct dialog displays.

+ Scripts running in the User context execute with the right of the user session.
+ Scripts running in the System context have the same rights as Windows services.

Script Development 7

Defining Event Triggers

Triggers are events that cause the Endpoint Security Agent to determine when and if a script should
be executed. These events can either be internal agent events or external events monitored by the
agent. A script is run when one of the triggers is fired, the script is not already running, and the
scripting context (system or user) is available.

Triggers are defined in the Scripting policy. You cannot use a script to change the triggers, but you
can use a script to discover the trigger that initiated a script. For information, see Trigger Event
Methods.

A brief description of each trigger is provided below. For more information, see “Scripting Policy” in
the ZENworks Endpoint Security Policies Reference.

*

*

Immediate: Executes the script immediately on load of the script.

Location Change: Executes the script when entering or leaving a location. Trigger can be
applied to all location changes or specific location changes only.

Network Change: Executes the script when a network environment that is used for location
determination changes, even if the network change does not cause a location change.

Network Connect: Executes the script when the wired adapter, wireless adapter, or modem
detects a new connection.

Network Disconnect: Executes the script with the wired adapter, wireless adapter, or modem
loses a connection.

Policy Change: Executes the script when the effective policy is updated.

Timer: Executes the script every n minutes after the initial enforcement of the policy. The interval
includes a one-minute boundary, meaning that the script is run within a minute (plus or minus) of
the end of the interval.

Namespaces

The Endpoint Security Agent provides three namespaces for a script to allow it to control or access
the agent. The namespaces are as follows:

*

Query: Provides methods to get the current state of the agent. For example, Query methods
could provide information about the device's network environment, security location, and
enforced policies.

Action: Provides methods to change the behavior of the agent or interact with the user. For
example, Action methods could display a message or message prompt, start or stop another
script, or change the security location.

Storage: Provides methods for the script to store variables for the current session (temporary)
or across sessions (persistent) For example, stored variables could be used to hold the last
execution time or to transfer data between script executions.

All methods begin with one of the three namespaces. For example:

+ string Query.ScriptName

+ int Action.TriggerScript(string script, string reason)

+ string Storage.GetNameValue(string name)

Script Development

Storage Interface

The Storage interface provides a way to save variable data. Variables can be saved in temporary
storage or persistent storage.

Variables

Scripting variables can be used to store information for use in the current Endpoint Security Agent
session (temporary variables) or for use across sessions (persistent variables).

As you use variables, be aware of the following naming conventions:

+ Variable names can contain any printable character.
+ Variable names are not explicitly limited in size.

+ Aglobal variable is defined by prepending a forward slash (/) to the variable name. Global
variables are available to other scripts. For example: Storage.NameValueExists(“/
boolWarnedOnPreviousLoop”).

+ Any variable that does not start with a forward slash (/) is a local variable. Local variables are
available only to the script that created them.

+ Variables are stored in either temporary storage or persistent storage (for details, see Storage
Interface). Variable names are unique to each storage system. If a script uses the same name
for a variable in both the temporary and persistent storage, the values are independent of each
other despite the name being the same.

Temporary Storage Methods

Temporary storage allows a variable to be retained for the current Endpoint Security Agent session
only. The variable is lost when the agent shuts down.

All variables are considered local to the script unless the variable name follows the naming
conventions for a global variable. Local variables use the script’s identifier to ensure unigueness. If
the script identifier is changed, the script no longer has access to its local variables.

bool Storage.NameValueExists(string name)

Description: Determines if a temporary variable already exists.
Parameters: name — variable name being requested
Returns: Tr ue if the variable is found in the store. Fal se if not.

string Storage.GetNameValue(string name)

Description: Gets the value associated with a temporary variable.
Parameters: name — variable name being requested
Returns: The value being stored. If the value does not exist, an empty string is returned.

Script Development

int Storage.SetNameValue(string name, string value)

Description: Sets the value for a temporary variable.
Parameters: name — variable name in which to store the value
value — value to store

Returns: 0 on success. Any other number on failure.

int Storage.ClearNameValue(string name)

Description: Clears the value for a temporary variable.
Parameters: name — name of variable to clear
Returns: 0 on success. Any other number on failure.

Persistent Storage Methods

Persistent storage allows a variable to be retained across Endpoint Security Agent restarts; the
variable can only be cleared by script or by using the Agent Status feature in the Endpoint Security

Agent’s About box.

All variables are considered local to the script unless the variable name follows the naming
conventions for a global variable. Local variables use the script's identifier to ensure uniqueness. If
the script identifier is changed, the script no longer has access to its local variables.

bool Storage.PersistValueExists(string name)

Description: Determines if a persistent variable already exists.
Parameters: name — variable name being requested
Returns: True if the variable is found in the store. False if not.

string Storage.GetPersistValue(string name)

Description: Gets the value associated with a persistent variable.
Parameters: name — variable name being requested
Returns: The value being stored. If the value does not exist, an empty string is returned.

10 Script Development

int Storage.SetPersistValue(string name, string value)

Description: Sets the value for a persistent variable.
Parameters: name — variable name in which to store the value
value — value to store

Returns: 0 on success. Any other number on failure.

int Storage.ClearPersistValue(string name)

Description: Clears the value for a persistent variable.
Parameters: name — name of variable to clear
Returns: 0 on success. Any other number on failure.

JScript Example

var ret;
var curVal ue = 0;
if (Storage. NameVal ueExi sts("testval"))
curVal ue = Storage. Get NaneVal ue("testval ");
cur Val ue++;
ret = Storage. Set NaneVal ue("testval", curVal ue);
Action. Trace("NameValue = " + curVal ue);
Action. Di spl ayMessage(" Storage", "Nanme Value: " + curValue, "Info", 3);
Acti on. Sl eep(3000);

curVal ue = 0;
i f (Storage. NaneVal uekxi sts("/testval "))

curVal ue = Storage. Get NaneVal ue("/testval");
cur Val ue++;
ret = Storage. Set NaneVal ue("/testval ", curVal ue);
Action. Trace(" Shared NameValue = " + curVal ue);
Action. Di spl ayMessage(" Shared Storage", "Name Val ue:
Acti on. Sl eep(3000);

+ curVal ue, "Info", 3);

curVal ue = 0;
if (Storage.PersistStringExists("testval"))
curVal ue = Storage. Get PersistString("testval");
cur Val ue++;
ret = Storage. SetPersistString("testval", curVal ue);
Action. Trace("Persist String =" + curVal ue);
Action. Di spl ayMessage(" Storage", "Persist String: " + curValue, "Info", 3);
Acti on. Sl eep(3000);

curVal ue = 0;
if (Storage.PersistStringExists("/testval"))

curVal ue = Storage. GetPersistString("/testval");
cur Val ue++;
ret = Storage. SetPersistString("/testval", curVal ue);
Action. Trace("Shared Prersist String =" + curValue);
Action. Di spl ayMessage(" Shared Storage", "Persist String:
Action. Sl eep(3000);

+ curValue, "Info", 3);

Script Development 11

VBScript Example

dimret
di m cur Val ue
curValue = 0

I f Storage. NaneVal ueExi sts("testval ") then
curVal ue = Storage. Get NaneVal ue("testval ")

End I f

curValue = curValue + 1

ret = Storage. Set NanmeVal ue("testval", curVal ue)

Action. Trace "NameValue =" & curVal ue

nsg = "Nanme Value: " & curVal ue

Action. Di spl ayMessage "Storage", msg, "Info", 3
Action. Sl eep 3000

curValue = 0
I f Storage. NaneVal uekxi sts("/testval") then
curVal ue = Storage. Get NaneVal ue("/testval ")

End |f

curValue = curValue + 1

ret = Storage. Set NaneVal ue("/testval ", curVal ue)
Action. Trace "Shared NaneValue = " & curVal ue

Action. Di spl ayMessage "Shared Storage", "Name Value: " & curValue, "Info", 3
Action. Sl eep 3000

curValue = 0
I f Storage. PersistStringExists("testval") then
curVal ue = Storage. GetPersistString("testval")

End If

curValue = curValue + 1

ret = Storage. SetPersistString("testval", curVal ue)
Action. Trace "Persist String =" & curVal ue

Action. Di spl ayMessage "Storage", "Persist String: " & curValue, "Info", 3
Action. Sl eep 3000

curValue = 0
I f Storage. PersistStringExists("/testval") then
curVal ue = Storage. GetPersistString("/testval")

End | f

curValue = curValue + 1

ret = Storage. SetPersistString("/testval", curVal ue)
Action. Trace "Shared Prersist String =" & curVal ue

Action. Di spl ayMessage "Shared Storage", "Persist String: " & curValue, "Info", 3
Action. Sl eep 3000

Script Management Interface

The Script Management interface provides methods for getting script information, launching other
scripts and programs, and displaying informational messages and prompts to users. The methods are
organized into the following sections:

12 Script Development

Script Information and Helper Methods

The Script Information and Helper methods get information about a script (name, ID, and execution
context) and provide general script helping functions such as creating a new unique ID for use in the
script, generating trace messages for the script, and pausing the script for a specified amount of time.

string Query.ScriptName

Description: Gets the name of the script. The name is derived from the Scripting policy name.

string Query.Scriptid

Description: Gets the script identifier. The identifier is derived from the Scripting policy ID.

string Query.ScriptContext

Description: Gets the context (user or system) in which the script is running.

string Query.UniquelD

Description: Generates a unique identifier for use by the script.

void Action.Trace(string msg)

Description: Sends trace messages to the user or service logs (depending on whether the script is
running in the user context or system context). Each trace message has its script id
concatenated to the message.

The trace messages can also be viewed in the Script Tracing dialog of the Endpoint
Security Agent About box.

Parameters: msg — The message string to log.

void Action.Sleep (int millisec)

Description: Causes the script to sleep for a specified period of time.

Parameters: millisec — The number of milliseconds the script sleeps before proceeding. The
implementation wakes up on a regular interval to check if the script needs to be
terminated early due to a policy change or agent restart. Control is returned only after
the number of milliseconds has expired.

Script Development 13

14

JScript Example

Action. Trace("");

Action. Trace(" ******** GSerjipt [nformation ***xxxxxx vy,
Action. Trace("UniquelD: " + Query. Uni quel D);

Action. Trace("Script Name: " + Query. Script Nane);
Action. Trace("Script ID " + Query.ScriptlD);

Action. Trace("Script Context: " + Query. ScriptContext);

VBScript Example

Action. Trace ""

Action. Trace " **x*xxx*x Gorjipt | nformation ****xxxxx v
Action. Trace "UniquelD: " & Query. Uni quel D

Action. Trace "Script Nanme: " & Query. Scri pt Nane
Action.Trace "Script ID. " & Query. ScriptlD
Action.Trace "Script Context: " & Query. Scri pt Cont ext

Version Methods

The Version methods get information about the version of a namespace (Query, Action, Storage) or of
the Endpoint Security Agent.

int Query.Version(string category, string component)

Description: Gets the version of the specified namespace or of the Endpoint Security Agent.
Parameters: category — One of the following four identifiers: query, act i on, st orage, cli ent.

component — The requested version component. The four identifiers are: naj or,
m nor, revi si on, bui | d.

Returns: An integer value for the requested component. If an invalid component is requested, -1
is returned.

JScript Example

Action. Trace("");
Action. Trace(" ******** Versjon |nformation ***x**xx*xx).
Action. Trace("");

Action.Trace("Cient: " + Query.Version("Cient", "Mgjor") + "." + Query. Version("
Cient", "Mnor") + "." + Query.Version("Cient", "Revision") + "." + Query.Versio
n("Cient", "Build"));

Action. Trace("Query: " + Query.Version("Qery", "Major") + "." + Query.Version("Q
ery", "Mnor") + "." + Query.Version("Query", "Revision") + "." + Query.Version("Q
uery", "Build"));

Action. Trace("Action: " + Query.Version("Action", "Mgjor") + "." + Query. Version("
Action", "Mmnor") + "." + Query.Version("Action", "Revision") + "." + Query.Versio
n("Action", "Build"));

Action. Trace("Storage: " + Query.Version("Storage", "Major") + "." + Query. Version
("Storage", "Mnor") + "." + Query.Version("Storage", "Revision") + "." + Query. Ve

rsion("Storage", "Build"));

Script Development

VBScript Example

Function Di spl ayVersi on (nane)
di m maj or
di m mi nor
di mrevision
dimbuild

nmaj or Query. Versi on(nane, "Mjor")

m nor Query. Version(nane, "M nor")

revi sion = Query. Version(nane, "Revision")

build = Query. Version(nane, "Build")

Action.Trace name & ": " & mgjor & "." & mnor &"." &revision &"." & build
End Functi on

Action. Trace
Action. Trace " *******x \fargion Infornation *******xx
Action. Trace ""

Di spl ayVersion("dient")

Di spl ayVer si on(" Query")

Di spl ayVersi on("Action")

Di spl ayVer si on(" St or age")

Trigger Event Methods

The Trigger Event methods get information about the event that caused the script to execute.

Trigger Reasons

The following table lists the reasons a script is triggered. Each trigger reason includes one or more
indexes that are available for the trigger. The indexes listed for each trigger are guaranteed to be
available. Other indexes, and even other reasons, might be available depending on the version of the
Endpoint Security Agent.

Trigger Reason Index Description

Location change reason The trigger reason value. For a location change, the value is
always | ocat i on.

switch_from_id The ID of the switched-from location.

switch_from The name of the switched-from location.

switch_to_id The ID of the switched-to location.

switch_to The name of the switched-to location

change_reason Reason for the location change that triggered the script; for

reasons, see Data Types

Network environment reason The trigger reason value. For a network environment change, the
change value is always net wor k_envi ronnent .
Network connect reason The trigger reason value. For a network connection, the value is

always net wor k_connect .

device_id The device ID of the adapter that detected the connection

Script Development 15

16

Trigger Reason

Index Description

Network disconnect

Immediate

Timer

reason The trigger reason value. For a network disconnection, the value

is always net wor k_di sconnect.

device_id The device ID of the adapter that detected the disconnect

reason The trigger reason value. For an immediate trigger, the value is

always i medi at e.

caller (Optional) The name of the script that initiated the trigger.

caller_ID (Optional) The ID of the script that initiated the trigger,

caller_reason (Optional) The reason the script initiated the trigger.

reason The trigger reason value. For a time trigger, the value is always
timer.

interval The time interval (in minutes) that triggered the script

string Query.TriggerParameter(string index)

Description:

Parameters:

Returns:

Gets the value of the requested index.

index — One of the index names listed in Trigger Reasons. For example, | ocat i on or
switch from

The value of the requested index value. For example, if r eason is the index, the value
might be | ocat i on or net wor k_connect . If swi t ch_f r omis the index, the value
might be wor k or of fi ce.

If an index is out of range or invalid, an empty string is returned.

int Query.TriggerParameterCount

Description:

Returns:

Gets the number of indexes for the trigger. For example, if Location change is the
trigger, 6 or more indexes can be available.

The number of indexes.

string Query.TriggerParameterName(int index)

Description:

Parameters:

Returns:

Script Development

Gets the name of the requested index.

index — The number of the index being requested. Index names are listed in Trigger
Reasons. Index numbers are not listed because they can change from one script run to
another. For example, the r eason index might be O during one run and 4 during
another.

The name of the requested index. For example, swi t ch_from | D, devi cel D, or
reason.

string Query.TriggerParameterValue(int index)

Description Gets the value of the requested index.

Parameters: index — The number of the index being requested. Index names are listed in Trigger
Reasons. Index numbers are not listed because they can change from one script run to
another. For example, the r eason index might be 0 during one run and 4 during
another.

Returns: The value of the requested index. For example, if swi t ch_f r omis the requested index
(based on its index number, not name), the value might be wor k or of f i ce.

JScript Example

Action. Trace("");

Action. Trace(" ******** Trjgger Reasons *****xxxx u).

Action. Trace("");

Action. Trace("Reason = " + Query. TriggerParaneter("reason"));

Action. Trace("Parameter Count = " + Query. Tri gger Par anet er Count);
for(var idx = 0; idx < Query.TriggerParaneterCount; idx++)

{
Action. Trace("Paranmeter: " + Query. TriggerParaneterNane(idx) + " -
> " + Query. TriggerParaneterVal ue(idx));

Action. Trace("Invalid trigger parmreturn: + Query. TriggerParaneter("-1"));

VBScript Example

Action. Trace ""
Action. Trace " ****xxxx Trjgger Reasons ***xxxxxx v
Action. Trace ""
Action. Trace "Reason = " & Query. Tri gger Paraneter("reason")
Action. Trace "Parameter Count =" & Query. Tri gger Par amet er Count
For idx = 0 to (Query. TriggerParaneterCount - 1)
Action. Trace "Paraneter: " & Query. TriggerParaneterNane(idx) & " -
> " & Query. Trigger Par anet er Val ue(i dx)
Next

Action.Trace "Invalid trigger parmreturn: & Query. TriggerParaneter("-1")

Script Run Methods

The Script Run methods trigger or terminate another script in the system.

Script Development

int Action.TriggerScript(string script, string reason)

Descript ion: Triggers another script in the system.
Parameters: script — The name or ID of the script being requested to run.

reason — Passed along as part of the trigger parameter. The script that is called has
the value stored as the caller_reason trigger parameter.

Returns: The following are common return values. Other values are also possible:

* 0 — The script was found and the trigger will be attempted.

+ 50 — The action is not supported; could be returned because the script is
attempting to trigger itself.

+ 1168 — The script was not found in the system.

¢ Other non-zero val ues — The script failed to run.

int Action.TerminateScript(string script, string reason)

Description: Terminates another script in the system by name or id. This does not unload the script.
Parameters: script — The name or ID of the script being requested to run.

reason — Passed along as part of the trigger parameter. The script that is called has
the value stored as the caller_reason trigger parameter.

Returns: The following are common return values. Other values are also possible:

* 0 — The script was found and the trigger will be attempted.

* 50 — The action is not supported; could be returned because the script is
attempting to terminate itself.

+ 1168 — The script was not found in the system.

¢ Other non-zero val ues — The script failed to run.

Program Launch/Execute Methods

The Launch/Execute methods provide ways to launch and execute programs. A launch method runs
the program but does not wait for the program to finish and return an exit code. An execute method
runs the program and waits for it to finish and return an exit code, or for the execution timeout to
expire.

A launched or executed program runs in the same context (user or system) as the script, unless the
script overrides the context by passing a new context.

Be aware that Windows Vista, Windows 7 and Windows Server 2008 do not allow GUI applications to
display in the system context.

18 Script Development

int Action.Launch(string context, bool hide, string command, string

parameters)

Description:

Parameters:

Returns:

Starts a program in the requested context. The script continues without waiting for the
program to return an exit code.

context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If t r ue, the command shell used to launch the program is not displayed. If
f al se, the command shell is displayed.

command — The command to execute. If the command starts with ht t p: or ww. , the
link is launched using the default web browser.

parameters — Parameters to be passed to the command.
The following are common return values. Other values are also possible:

¢ 0 — Success

+ 31 — General failure. The launching of the program failed due to a file not found,
the command failing, or other similar reason.

+ 1359 — The launch context (user or system) is not available.

int Action.Execute(string context, bool hide, string command, string

parameters)

Description:

Parameters:

Returns:

Starts a program in the requested context. The script pauses until the program returns
an exit code.

context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If true, the command shell used to execute the program is not displayed. If
false, the command shell is displayed.

command — The command to execute. If the command starts with ht t p: or ww. , the
link is launched using the default web browser.

parameters — Parameters to be passed to the command.

In addition to the exit code of the executed program, the following errors can be
returned:

¢ 31 — General failure. Execution failed due to a file not found, the command
failing, or other similar reasons.

+ 1359 — The execute context (user or system) is not available.

Script Development

19

20

int Action.ExecuteWithTimeout(string context, bool hide, string
command, string parameters int timeout)

Description: Starts a program in the requested context. The script pauses until the program returns
an exit code or until the timeout is reached.

Parameters: context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If true, the command shell used to execute the program is not displayed. If
false, the command shell is displayed.

command — The command to execute. If the command starts with ht t p: or ww. , the
link is launched using the default web browser.

parameters — Parameters to be passed to the command.
timeout — Number of seconds to wait for an exit code from the program.

Returns: In addition to the exit code of the executed program, the following errors can be
returned:

¢ 31 — General failure. Execution failed due to a file not found, the command
failing, or other similar reasons.

+ 121 — The command was successfully executed but did not complete before the
timeout was reached.

+ 1359 — The execute context (user or system) is not available.

JScript Example

var ret;

ret = Action.Launch("user", false, "notepad", "");

Action. Trace("User: Launch notepad: " + ret);

ret = Action. Execute("user", false, "notepad", "");

Action. Trace("User: Execute notepad: " + ret);

ret = Action. ExecuteWthTi neout ("user", false, "notepad", "", 5);
Action. Trace("User: Execute with Timeout, notepad: " + ret);
VBScript Example

dimret

ret = Action.Launch("user", false, "notepad", "")

Action. Trace("User: Launch notepad: " & ret)

ret = Action. Execute("user", false, "notepad", "")

Action. Trace("User: Execute notepad: " & ret)

ret = Action. ExecuteWthTi neout ("user", false, "notepad", "", 5)
Action. Trace("User: Execute with Timeout, notepad: " & ret)

Script Development

Display Methods

The Display methods enable a message to be displayed to a user. The methods are valid only if the

script is running in a user session.

The displayed message includes an OK button to dismiss the message. You can also set a timeout to
automatically dismiss the message. The message does not pause the script; it continues to run while
the message displays.

Display messages are intended for providing information to the user. If you need to display a
message that requires the user to make a choice (such as OK or Cancel), you should use a message
prompt. See Prompt Methods.

void Action.DisplayMessage(string title, string message, string icon,

int timeout)

Description:

Parameters:

If a primary user process is running, displays a custom message to the user. If no
primary user process is a vial able, the message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: err or, app, hand, i nf o, quest

war n, excl anmati on (or!), st op, ast eri sk (or *), default. Be aware that it is possible

for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

void Action.DisplayMessageWithLink(string title, string message,
string icon, int timeout, string linkName, string linkCommand, string
linkParameters)

Description:

Parameters:

If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

linkName — The name of the link to be display on the dialog box.
linkCommand — The command to be executed when the link is clicked.

linkParameters — Parameters to be passed as part of the execution command.

Script Development

21

22

void Action.DisplayMessageByld(string id, string title, string
message, string icon, int timeout)

Description:

Parameters:

If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

id — Provides that ability for message suppression. If a message with the same id is
already being displayed to the user, this message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest ,
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

void Action.DisplayMessageByldWithLink(string id, string title,
string message, string icon, int timeout, string linkName, string
linkCommand, string linkParameters)

Description:

Parameters:

Script Development

If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

id — Provides that ability for message suppression. If a message with the same id is
already being displayed to the user, this message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: err or, app, hand, i nf o, quest
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

linkName — The name of the link to be display on the dialog box.
linkCommand — The command to be executed when the link is clicked.

linkParameters — Parameters to be passed as part of the execution command.

JScript Example

Action. Di spl ayMessage("Di spl ay Message", "Error icon", "Error", 2);
Acti on. Sl eep(2000);

Action. Di spl ayMessageW t hLi nk("Di spl ay Message Wth Link", "Error icon", "Error",
2, "novell", "ww.novell.cont, "");
Acti on. Sl eep(2000);

Action. Di spl ayMessageByl d("2", "Display Message By Id", "Should See", "app", 5);

Acti on. Sl eep(2000);

Action. Di spl ayMessageByl d("2", "D splay Message By Id", "Should not see", "error"”,
2);

Acti on. Sl eep(3000);

Action. Di spl ayMessageByl dW t hLi nk("8", "Di splay Message By Id Wth Link", "Should
See", "app", 5, "novell", "ww. novell.conl, "");

Acti on. Sl eep(2000);

Acti on. Di spl ayMessageByl dW t hLi nk("8", "Di splay Message By Id Wth Link", "Should
not see", "error", 2, "novell", "ww. novell.conl, "");

VBScript Example

Action. Di spl ayMessage "Di spl ay Message", "Error icon", "Error", 2
Action. Sl eep 2000

Action. Di spl ayMessageW t hLi nk "Di spl ay Message Wth Link", "Error icon", "Error",
2, "novell", "ww.novell.conl, ""
Action. Sl eep 2000

Action. Di spl ayMessageByld "2", "Display Message By 1d", "Should See", "app", 5

Action. Sl eep 2000

Action. Di spl ayMessageByld "2", "D splay Message By Id", "Should not see", "error",
2

Action. Sl eep 3000

Action. Di spl ayMessageByl dW t hLink "8", "Display Message By Id Wth Link", "Should
See", "app", 5, "novell", "ww. novell.conf,
Action. Sl eep 2000

Action. Di spl ayMessageByl dW t hLi nk "8", "Display Message By Id Wth Link", "Should
not see", "error", 2, "novell", "ww. novell.cont, ""

Prompt Methods

The Prompt methods enable a message prompt to be displayed to a user. The methods are valid only
if the script is running in a user session.

The prompt can include different response buttons, such as OK/Cancel or Abort/Retry/Ignore. You
can also set a timeout to automatically close the prompt if the user doesn’t respond.

Message prompts are intended for prompting the user to make a choice. If you only need to display
information to the user, you should use a display message. See Display Methods.

Script Development 23

string Action.Prompt(string title, string message, string icon, int
timeout, string buttons)

Description: If a primary user process is running, displays a custom message prompt to the user. If
no primary user process is available, the message prompt is dropped.

Parameters: title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

buttons — The buttons to display. Valid inputs are: ok, okCancel , abort Retryl gnor e,
yesNoCancel , yesNo, r et ryCancel . Inputs are not case-sensitive.

Returns: One of the following:

+ “— Empty string. The primary process is unavailable, no input received.
+ cl osed — Dialog box closed without input.

* timeout — Dialog box timed out.

+ ok — OK button selected.

+ cancel — Cancel button selected.

+ abort — Abort button selected.

* retry — Retry button selected.

+ ignore — Ignore button selected.

+ yes — Yes button selected.

* no — No button selected.

¢ cancel — Cancel button selected.

string Action.PromptWithLink(string title, string message, string
icon, int timeout, string buttons, string linkName, string
linkCommand, string linkParameters)

Description: If a primary user process is running, displays a custom message prompt to the user. If
no primary user process is available, the message prompt is dropped.

24 Script Development

Parameters: title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following

system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest

war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

buttons — The buttons to display. Valid inputs are: ok, okCancel , abort Retryl gnor e,

yesNoCancel , yesNo, r et ryCancel . Inputs are not case-sensitive.

linkName — The name of the link to be display on the dialog box.
linkCommand — The command to be executed when the link is clicked.
linkParameters — Parameters to be passed as part of the execution command.

Returns: One of the following:

+ " — Empty string. The primary pro