TeamWorks 18.1
Using the Real-time WebSocket APls

April 2018

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

Copyright © 2018 Micro Focus Software Inc. All Rights Reserved.

https://www.microfocus.com/about/legal

Contents

About This Guide 5

1 Introduction 7
2 Using the Real-time API 9
2.1 Establishing a connection 9
211 Formatting Preferences 9

2.2 Realtime event streams e 10
221 Session stream e 10

222 User Stream e 11

223 ROOM Stream 12

224 Room badge stream e 13

225 SyStem Stream. 14

2.8 RP O 15
231 Request MeSSages ottt 15

23.2 Response Messageso 16

233 Methods.o 16

Contents

3

About This Guide

+ Chapter 1, “Introduction,” on page 7
+ Chapter 2, “Using the Real-time API,” on page 9

Audience

This guide is intended for GroupWise TeamWorks developers.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the comment on this topic link at the bottom of each page of
the online documentation.

Documentation Updates

For the most recent version of the this guide, visit the TeamWorks API Documentation on (http://
wwwtest.provo.novell.com/documentation/teamworks-18).

About This Guide 5

http://wwwtest.provo.novell.com/documentation/teamworks-18

6

About This Guide

Introduction

The TeamWorks Real-time API is a WebSocket-based API that allows clients to receive information
about updates in the system as they occur. It also has limited RPC capabilites.

Introduction 7

8 Introduction

2.1

2.1.1

Using the Real-time API

¢ Section 2.1, “Establishing a connection,” on page 9
¢ Section 2.2, “Real-time event streams,” on page 10
¢ Section 2.3, “RPC,” on page 15

Establishing a connection

The WebSocket URL for the Real-time APl is:
wss: //server _| P_or _DNS: 8443/ ssf/websocket / def aul t

In order to establish a WebSocket connection, the WebSocket protocol specifies that the client is to
connect to the server and send an HTTP Upgrade request. The TeamWorks Real-time API requires
that this HTTP upgrade request include Basic Authentication information in order to authenticate the
user.

Most WebSocket client libraries hide the details of this Upgrade request, only require the WebSocket
URL, and let you supply custom headers. For example, the following code establishes a WebSocket
connection using the Python websocket-client library (https://pypi.python.org/pypi/websocket-client):

i nport base64
i nport websocket
auth = 'testuser:testpasswd
headers = [' Authorization: Basic %' % base64. b64encode(auth)]
ws = websocket. WebSocket App(
‘wss://anet hyst. provo. novel | . com 8443/ ssf/websocket/default',
header = headers)

Once the connection is successfully established and authenticated, the client will receive a hel | o
event message from the server.

Formatting Preferences

Each WebSocket connection has formatting preferences that control how certain messages that the
server sends are formatted. The client can control these preferences with the
set _format _preferences RPC method.

Currently, the only supported formatting preference is mention_format, which can be either readable
(default) or raw. This preference controls how references to users (mentions) in topics and comments
are formatted. Raw mentions are in the format @ { obj ect -t ype}: { obj ect -i d}: {di spl ay-text}],
while readable mentions are @di spl ay-text}.

Raw Example

{

“@ype”’: “topic”,

"id": "123",

“body”: “Hi, @user:97:John Doe]”
}

Using the Real-time API

9

2.2

2.2.1

For more information about RPC requests, see “RPC” on page 15.

Readable Example

{

“@ype”: “topic”,

"id': "123",

“body”: “Hi, @ohn Doe”
}

Real-time event streams

Event streams are a continuous feed of updates (events) related to a particular entity in the system.
By subscribing to streams, real-time API clients will receive these events as they occur.

An event message contains information about the type of event, the stream it belongs to and the
affected entity. For example:

{
"message_type": "event",
"event _type": "topic_created",
"event _streant: {
"type": "roont,
"id": 254"
b
"entity": {
/1 ... Topic object
}
}

For more information about the entity objects (Room, Topic, Comment, etc.), see the Data Types
section of the REST API| documentation.

Session stream

The session stream is a source for events related to the client’'s WebSocket session. The client is
automatically subscribed to the session stream.

Session events

Event Type Entity Object Type Description

hell o None The client session has been
successfully established

10 Using the Real-time API

https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/data.html
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/data.html
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/

2.2.2

Event Type

Entity Object Type

Description

st ream unsubscri bed

Event St ream

The client session has been
unsubscribed from the stream.
Sessions are unsubscribed from
streams in the following situations:

*

The client sends an
unsubscri be_from stream
RPC request.

The room is deleted.

The user loses access to the
room because the room was
changed to a private room.

The user loses access to the
room because the user was
removed as a member of the
private room.

User access to the real-time
API has been disabled for
system maintenance.

User stream

The user stream is a source for events related to a particular user. When a client connects to the real-
time AP, it is automatically subscribed to the authenticated user’s stream.

User events

Event Type

Entity Object Type

Description

favorite_room added

Room

Aroom had been added to the user’s
favorite rooms list.

Rooms are added in each of the
following situations:

*

The user marks the room as a
favorite.

The user creates a room.

The user is added as a member
of a room.

Using the Real-time API

1"

Event Type Entity Object Type Description

favorite_roomrenoved RoonRef er ence Aroom has been removed from the
user’s favorite rooms list. Rooms are
removed in the following situations:

* The user unfavorites a room.
+ Afavorite room is deleted.

¢ The useris removed as a
member of a private room.

+ Afavorite room is no longer
visible to the user because it
was changed to a private room.

notification Notification The user has received a naotification.

notifications_refresh_required None One or more of the user's
notifications have been removed
because the room, topic, or comment
they reference has been deleted.

The client should refresh any data it
has dealing with the user's
notifications.

roomyvisited User RoonDet ai | s The user has visited the room, and
the user's last visit date has been
updated for the room.

The last visit date determines which
topics and comments in the room are
considered to be new.

2.2.3 Room stream

A room stream is a source for events related to a particular room. The client is not automatically
subscribed to any room streams. In a typical TeamWorks client application, the client will subscribe to
a room stream when the user enters that room in the UI. This allows the client to update the Ul
immediately when changes occur in the room, for example, when new topics or comments are added.
When the user leaves the room and goes to another place in the client application, the client will
unsubscribe from the room stream because it no longer needs to know about updates in that room in
real-time.

Subscribing to a room stream

To subscribe to a room stream, the client sends a subscribe_to_stream RPC request message via the
WebSocket:

12 Using the Real-time API

224

"nmessage_t ype":

"rpc_request",

"met hod": "subscribe_to_streant,
"request _id": "12345abcde",
"entity": {

"@ype": "streant,

"type": "roont,

"id": 236"

}

For more information about RPC requests, see “RPC” on page 15.

Room events

Event Type

Entity Object Type

Description

coment _created

Coment

Someone has commented on a
topic in the room.

coment _del et ed

Conment Ref er ence

A comment in the room has been
deleted.

comment _updat ed

Coment

A comment in the room has been
updated.

menber _added

Room\venber shi p

Auser has been added as a
member of the room.

menber _renoved

Room\venber shi p

A user has been removed as a
member of the room.

room del et ed RoonRef er ence The room has been deleted.
room updat ed Room The room has been updated.
topi c_created Topi ¢ A new topic has been created in the

room.

topi c_del eted

Topi cRef erence

A topic has been deleted.

t opi ¢c_updat ed

Topi ¢

A topic has been updated.

Room badge stream

A room badge stream is a source for "summary" events related to a particular room. It provides a
limited set of events that allow clients to track when messages are added to a room.

Like room streams, the client is not automatically subscribed to any room badge streams. In a typical
TeamWorks client application, the client will subscribe to each badge stream in the user's favorite
rooms list. This way, the client can present the favorite rooms list with information indicating whether
or not the room has new content since the last time the user visited the room (room badging).

Subscribing to a room badge stream

To subscribe to a room stream, the client sends a "subscribe_to_stream" RPC request message via
the WebSocket:

Using the Real-time API 13

14

"message_type": "rpc_request",
"met hod": "subscribe_to_streant,
"request _id": "12345abcde",
"entity": {

"@ype": "streant,
"type": "room badge",
"id": 236"

}

For more information about RPC requests, seeSection 2.3, “RPC,” on page 15.

Room events

Event Type Entity Object Type Description

nmenber _added Room\venber shi p A user has been added as a
member of the room.

nmenber _r emoved Room\venber shi p A user has been removed as a
member of the room.

nessage_post ed Post edMessage A new message (topic or comment)
has been posted to the room.

room del et ed RoonRef er ence The room has been deleted.

room updat ed Room The room has been updated.

225 System stream

The system stream is a source for events related to the TeamWorks system. The client is

automatically subscribed to the system stream.

System events

Event Type Entity Object Type Description

api _avail abl e None Access to the Real-time API has
been reenabled. The client can
resubscribe to room streams and
receive real-time events again.

api _unavail abl e None Access to the Real-time API has

been disabled due to system
maintenance. When access is
disabled, the websocket session is
unsubscribed from all room and
room badge streams and all RPC
requests will fail with an

APl _UNAVAI LABLE error. Once
access is reenabled, the server will
send an api - avai | abl e event.

Using the Real-time API

2.3

2.3.1

RPC

The TeamWorks Real-time API supports RPC requests. Some of these RPC methods deal with
managing the WebSocket session and others make changes in the TeamWorks system.

The RPC methods that make changes to the TeamWorks system are also available in the REST API.
For example, both APIs provide the ability to comment on a topic. Because each REST request has
overhead when establishing a connection and authenticating the user, the Real-time API is more
efficient. However, the Real-time API does not duplicate all functionality available through REST. It
only supports actions where the resulting efficiency and immediacy significantly improve the user
experience.

Making an RPC request involves sending an RPC request message to the server. The server will
process the request asynchronously and send an RPC response message sometime later. If a client
sends multiple requests, the server makes no guarantee about the order of the response messages.
The client must keep track of pending requests in order to match response messages with the original
request message.

To help the client do this, the request and response messages include ar equest _i d field. The server
includes in the response whatever ID the client provided in the request message. As a best practice,
the client should generate a unique ID for each request. These IDs need only be unique for the client
session. Something as simple as a number sequence, i.e. 1, 2, 3, etc., is sufficient.

NOTE: If the request message is not well-formed JSON, or if it specifies an invalid value for an
enumerated type (such as EventStream type), the server will be unable to parse the message. When
this occurs, the server is not able to read the r equest _i d or net hod fields and therefore does not
include those fields in the response message.

Request Messages

{
"message_type": "rpc_request",
"method": "create_ topic",
"request _id": "12345abcde",
"entity": {
"@ype": "topic",
"rooni': {
"id": "456"
}1
"body": "H, everyone, here’'s a new topic to discuss."
}
}

Using the Real-time API 15

16

2.3.2

2.3.3

Response Messages

{
"message_type": "rpc_request”,
"met hod": "create_topic",
"request _id": "12345abcde",
"status": {
"status_code": 200
}
"entity": {
"@ype": "topic",
"room': {
"id": "456"
}
"body": "H, everyone, here's a new topic to discuss."
}
}
Status

The status object in the response message indicates whether the operation completely successfully.
It contains a numeric status code, which is patterned after HTTP status codes.

Typical status codes are:

¢ 200 (Success)

+ 400 (Bad request)
+ 403 (Forbidden)
+ 404 (Not found)
+ 409 (Conflict)

¢ 500 (Internal server error)
+ 503 (Service Unavailable)

NOTE: For status_code numbers greater than or equal to 300, the status object will also include
additional information, for example:

"status": {
"status_code": 404,
"error": {
"code": "ROOM NOT_FCQUND',
"message”: "No roomexists with I D 234"
}
}

For more information about possible error codes, see {list of error codes shared between the REST
and real-time APIs in the doc} (https://www.novell.com/documentation/??).

Methods

The following table shows the supported RPC methods. For more information about request and
response entities, see the Data Types section of the REST API documentation.

Using the Real-time API

https://www.novell.com/documentation/??
https://www.novell.com/documentation/??
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/data.html
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/

Method

Request Entity Object

Response Entity
Object

Description

creat e_comment Conment Comment Add a comment to a
topic or comment
create_topic Topi ¢ Topi ¢ Post a new topic to a

room.

del et e_comment

Conment or String
(coment HRef)

Comment Ref er ence

Delete a comment

del ete_topic

Topic or String

Topi cRef erence

Delete a topic

(topic HRef)
get _format_preferences None For mat Pr ef er ences Retrieve message
formatting preferences
pi ng None None Ping the server to test

the validity of the web
socket session

set _fornmat _preferences

For mat Pr ef er ences

For mat Pr ef er ences

Update message
formatting preferences

subscribe_to_stream

Event St ream

Event St ream

Subscribe to the
specified stream

updat e_comrent Conment Comment Update a comment
updat e_t opi ¢ Topi ¢ Topi ¢ Update a topic
unsubscri be_fromstream EventStream Event Stream Unsubscribe from the

specified stream

Using the Real-time API

17

18 Using the Real-time API

	TeamWorks 18.1: Using the WebSocket APIs
	About This Guide
	1 Introduction
	2 Using the Real-time API
	2.1 Establishing a connection
	2.1.1 Formatting Preferences

	2.2 Real-time event streams
	2.2.1 Session stream
	2.2.2 User stream
	2.2.3 Room stream
	2.2.4 Room badge stream
	2.2.5 System stream

	2.3 RPC
	2.3.1 Request Messages
	2.3.2 Response Messages
	2.3.3 Methods

